Undoubtedly, the Navier-Stokes equations are of basic importance within the context of modern theory of partial differential equations. Although the range of their applicability to concrete problems has now been clearly recognised to be limited, as my dear friend and bright colleague K.R. Ra jagopal has showed me by several examples during the past six years, the mathematical questions that remain open are of such a fascinating and challenging nature that analysts and applied mathematicians cannot help being attracted by them and trying to contribute to their resolution. Thus, it is not a coincidence that over the past ten years more than seventy sig nificant research papers have appeared concerning the well-posedness of boundary and initial-boundary value problems. In this monograph I shall perform a systematic and up-to-date investiga tion of the fundamental properties of the Navier-Stokes equations, including existence, uniqueness, and regularity of solutions and, whenever the region of flow is unbounded, of their spatial asymptotic behavior. I shall omit other relevant topics like boundary layer theory, stability, bifurcation, de tailed analysis of the behavior for large times, and free-boundary problems, which are to be considered "advanced" ones. In this sense the present work should be regarded as "introductory" to the matter.
This book surveys research results on the physical and mathematical modeling, as well as the numerical simulation of complex fluid and structural mechanical processes occurring in the human blood circulation system. Topics treated include continuum mechanical description; choice of suitable liquid and wall models; mathematical analysis of coupled models; numerical methods for flow simulation; parameter identification and model calibration; fluid-solid interaction; mathematical analysis of piping systems; particle transport in channels and pipes; artificial boundary conditions, and many more. The book was developed from lectures presented by the authors at the Oberwolfach Research Institute (MFO), in Oberwolfach-Walke, Germany, November, 2005.
We study the unconstrained (free) motion of an elastic solid B in a Navier-Stokes liquid L occupying the whole space outside B, under the assumption that a constant body force b is acting on B. More specifically, we are interested in the steady motion of the coupled system {B,L}, which means that there exists a frame with respect to which the relevant governing equations possess a time-independent solution. We prove the existence of such a frame, provided some smallness restrictions are imposed on the physical parameters, and the reference configuration of B satisfies suitable geometric properties.
This fourth volume in the comprehensive series “fills a gap in the existing narrative” of WWII’s Mediterranean air war (Journal of Military History). The fourth volume in this momentous series commences with the attacks on the Italian island fortress of Pantellaria, which led to its surrender and occupation achieved almost by air attack alone. The account continues with the ultimately successful, but at times very hard fought, invasions of Sicily and southern Italy as burgeoning Allied air power, now with full US involvement, increasingly dominated the skies overhead. The successive occupations of Sardinia and Corsica are also covered in detail. This is essentially the story of the tactical air forces up to the point when Rome was occupied, just at the same time as the Normandy landings were occurring in northwest France. With regards to the long-range tactical role of the Allied heavy bombers, only the period from May to October is examined, while they remained based in North Africa, with the narrative continuing in a future volume. This volume also delves into the story of “the soldiers’ air force.” Frequently overshadowed by more immediate newsworthy events elsewhere, the soldiers’ struggle was often of an equally Homeric nature. “No future publication on the Mediterranean air war will be credible without use of this series.” —Air Power History
In this book an international group of authors explores the extent of and the socio-cultural factors underlying the ascendancy of eating disorders in some countries of the Mediterranean area in our own time. The authors express their local observations and struggles in an effort to map the impact of culture on the development of eating disorders. The topics reviewed echo back to each other and underscore the complexity of defining, measuring and possibly even changing culture. The book takes a 'transcultural' view, which is both 'trans' and 'cultural'. Realms transverse the academic terrain with chapters that pull on history, geography, biology and literature to set the stage for a review of cultural causes, with culture being the political, commercial and treatment settings potential eating disordered individuals find themselves in. The chapters demonstrate how control, the key cognitive construct of eating disorders, is impacted by the internal and external environment of the eating disordered individual. And if control is the bridge, shame is the dark sea that one struggles to avoid. Biological and psychological data from humans and animals is offered in an attempt to understand how efforts to maintain an honourable social ranking impacts food and body shape choices.
Constantin presents the Euler equations of ideal incompressible fluids and the blow-up problem for the Navier-Stokes equations of viscous fluids, describing major mathematical questions of turbulence theory. These are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations, explained in Gallavotti's lectures. Kazhikhov introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. Y. Meyer focuses on nonlinear evolution equations and related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, localized in space or in time variable. Ukai discusses the asymptotic analysis theory of fluid equations, the Cauchy-Kovalevskaya technique for the Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis, giving compressible and incompressible limits of the Boltzmann equation, and the analysis of their initial layers.
Undoubtedly, the Navier-Stokes equations are of basic importance within the context of modern theory of partial differential equations. Although the range of their applicability to concrete problems has now been clearly recognised to be limited, as my dear friend and bright colleague K.R. Ra jagopal has showed me by several examples during the past six years, the mathematical questions that remain open are of such a fascinating and challenging nature that analysts and applied mathematicians cannot help being attracted by them and trying to contribute to their resolution. Thus, it is not a coincidence that over the past ten years more than seventy sig nificant research papers have appeared concerning the well-posedness of boundary and initial-boundary value problems. In this monograph I shall perform a systematic and up-to-date investiga tion of the fundamental properties of the Navier-Stokes equations, including existence, uniqueness, and regularity of solutions and, whenever the region of flow is unbounded, of their spatial asymptotic behavior. I shall omit other relevant topics like boundary layer theory, stability, bifurcation, de tailed analysis of the behavior for large times, and free-boundary problems, which are to be considered "advanced" ones. In this sense the present work should be regarded as "introductory" to the matter.
This volume consists of five research articles, each dedicated to a significant topic in the mathematical theory of the Navier-Stokes equations, for compressible and incompressible fluids, and to related questions. All results given here are new and represent a noticeable contribution to the subject. One of the most famous predictions of the Kolmogorov theory of turbulence is the so-called Kolmogorov-obukhov five-thirds law. As is known, this law is heuristic and, to date, there is no rigorous justification. The article of A. Biryuk deals with the Cauchy problem for a multi-dimensional Burgers equation with periodic boundary conditions. Estimates in suitable norms for the corresponding solutions are derived for "large" Reynolds numbers, and their relation with the Kolmogorov-Obukhov law are discussed. Similar estimates are also obtained for the Navier-Stokes equation. In the late sixties J. L. Lions introduced a "perturbation" of the Navier Stokes equations in which he added in the linear momentum equation the hyper dissipative term (-Ll),Bu, f3 ~ 5/4, where Ll is the Laplace operator. This term is referred to as an "artificial" viscosity. Even though it is not physically moti vated, artificial viscosity has proved a useful device in numerical simulations of the Navier-Stokes equations at high Reynolds numbers. The paper of of D. Chae and J. Lee investigates the global well-posedness of a modification of the Navier Stokes equation similar to that introduced by Lions, but where now the original dissipative term -Llu is replaced by (-Ll)O:u, 0 S Ct
This is the second of four volumes on the Navier-Stokes equations, specifically on Nonlinear Stationary Problems. The volumes deal with the fundamental mathematical properties of the Navier-Stokes equations, such as existence, regularity and uniqueness of solutions, and, for unbounded domains, their asymptotic behavior. The work is an up-to-date and detailed investigation of these problems for motions in domains of different types: bounded, exterior and domain with noncompact boundaries. Throughout the work, main problems which, so far, remain open are pointed out and for some of these conjectures are offered. New results are presented throughout, while several classical subjects are treated in a completely original way. The work is mathematically self contained, requiring no specific background. The 200-plus exercises along with the chapter summaries and questions make this an excellent textbook for any theoretical Fluid Mechanics course; it is suitable as well for self teaching. It is set up to remain useful as a reference or dictionary.
This book surveys research results on the physical and mathematical modeling, as well as the numerical simulation of complex fluid and structural mechanical processes occurring in the human blood circulation system. Topics treated include continuum mechanical description; choice of suitable liquid and wall models; mathematical analysis of coupled models; numerical methods for flow simulation; parameter identification and model calibration; fluid-solid interaction; mathematical analysis of piping systems; particle transport in channels and pipes; artificial boundary conditions, and many more. The book was developed from lectures presented by the authors at the Oberwolfach Research Institute (MFO), in Oberwolfach-Walke, Germany, November, 2005.
This volume brings together five contributions to mathematical fluid mechanics, a classical but still very active research field which overlaps with physics and engineering. The contributions cover not only the classical Navier-Stokes equations for an incompressible Newtonian fluid, but also generalized Newtonian fluids, fluids interacting with particles and with solids, and stochastic models. The questions addressed in the lectures range from the basic problems of existence of weak and more regular solutions, the local regularity theory and analysis of potential singularities, qualitative and quantitative results about the behavior in special cases, asymptotic behavior, statistical properties and ergodicity.
On November 3, 2005, Alexander Vasil’evich Kazhikhov left this world, untimely and unexpectedly. He was one of the most in?uential mathematicians in the mechanics of ?uids, and will be remembered for his outstanding results that had, and still have, a c- siderablysigni?cantin?uenceinthe?eld.Amonghis manyachievements,werecall that he was the founder of the modern mathematical theory of the Navier-Stokes equations describing one- and two-dimensional motions of a viscous, compressible and heat-conducting gas. A brief account of Professor Kazhikhov’s contributions to science is provided in the following article “Scienti?c portrait of Alexander Vasil’evich Kazhikhov”. This volume is meant to be an expression of high regard to his memory, from most of his friends and his colleagues. In particular, it collects a selection of papers that represent the latest progress in a number of new important directions of Mathematical Physics, mainly of Mathematical Fluid Mechanics. These papers are written by world renowned specialists. Most of them were friends, students or colleagues of Professor Kazhikhov, who either worked with him directly, or met him many times in o?cial scienti?c meetings, where they had the opportunity of discussing problems of common interest.
The book provides a comprehensive, detailed and self-contained treatment of the fundamental mathematical properties of boundary-value problems related to the Navier-Stokes equations. These properties include existence, uniqueness and regularity of solutions in bounded as well as unbounded domains. Whenever the domain is unbounded, the asymptotic behavior of solutions is also investigated. This book is the new edition of the original two volume book, under the same title, published in 1994. In this new edition, the two volumes have merged into one and two more chapters on steady generalized oseen flow in exterior domains and steady Navier–Stokes flow in three-dimensional exterior domains have been added. Most of the proofs given in the previous edition were also updated. An introductory first chapter describes all relevant questions treated in the book and lists and motivates a number of significant and still open questions. It is written in an expository style so as to be accessible also to non-specialists.Each chapter is preceded by a substantial, preliminary discussion of the problems treated, along with their motivation and the strategy used to solve them. Also, each chapter ends with a section dedicated to alternative approaches and procedures, as well as historical notes. The book contains more than 400 stimulating exercises, at different levels of difficulty, that will help the junior researcher and the graduate student to gradually become accustomed with the subject. Finally, the book is endowed with a vast bibliography that includes more than 500 items. Each item brings a reference to the section of the book where it is cited. The book will be useful to researchers and graduate students in mathematics in particular mathematical fluid mechanics and differential equations. Review of First Edition, First Volume: “The emphasis of this book is on an introduction to the mathematical theory of the stationary Navier-Stokes equations. It is written in the style of a textbook and is essentially self-contained. The problems are presented clearly and in an accessible manner. Every chapter begins with a good introductory discussion of the problems considered, and ends with interesting notes on different approaches developed in the literature. Further, stimulating exercises are proposed. (Mathematical Reviews, 1995)
Part of a series which aims to cover advances in mathematics for the applied sciences, this volume presents essays on diverse mathematical problems relating to the Navier-Stokes equation.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.