Nanosystems use new, nanoscopic electrical and/or mechanical devices which, as constituents of electronic and electromechanical systems, find application primarily in computing, embedded control and biomedical data acquisition. In particular, this book will deal with the characterization and patterning of these materials from an engineering perspective, with the objective of creating operational prototypes and products. The book will integrate various nano technologies on materials, devices and systems and identify key areas and results. The book will describe different design aspects for integrated systems on silicon, as well as on heterogeneous platforms including, but not limited to, electrical, optical, micromechanical and biological components in various forms and mixtures. By associating research topics from differing horizons, the book will provide a unique opportunity to bridge the gap between electronics/electrical engineering and materials science. The book will include topics at the intersection of these disciplines, and will interface with computer science, biology and medicine.
This title serves as an introduction ans reference for the field, with the papers that have shaped the hardware/software co-design since its inception in the early 90s.
The design of today's semiconductor chips for various applications, such as telecommunications, poses various challenges due to the complexity of these systems. These highly complex systems-on-chips demand new approaches to connect and manage the communication between on-chip processing and storage components and networks on chips (NoCs) provide a powerful solution. This book is the first to provide a unified overview of NoC technology. It includes in-depth analysis of all the on-chip communication challenges, from physical wiring implementation up to software architecture, and a complete classification of their various Network-on-Chip approaches and solutions.* Leading-edge research from world-renowned experts in academia and industry with state-of-the-art technology implementations/trends* An integrated presentation not currently available in any other book* A thorough introduction to current design methodologies and chips designed with NoCs
This book presents the overall vision and research outcomes of Nano-Tera.ch, which is a landmark Swiss federal program to advance engineering system and device technologies with applications to Health and the Environment, including smart Energy generation and consumption. The authors discuss this unprecedented nation-wide program, with a lifetime of almost 10 years and a public funding of more than 120 MCHF, which helped to position Switzerland at the forefront of the research on multi-scale engineering of complex systems and networks, and strongly impacted the Swiss landscape in Engineering Sciences.
Computer-aided synthesis of digital circuits from behavioral level specifications offers an effective means to deal with increasing complexity of digital hardware design. High Level Synthesis of ASICs Under Timing and Synchronization Constraints addresses both theoretical and practical aspects in the design of a high-level synthesis system that transforms a behavioral level description of hardware to a synchronous logic-level implementation consisting of logic gates and registers. High Level Synthesis of ASICs Under Timing and Synchronization Constraints addresses specific issues in applying high-level synthesis techniques to the design of ASICs. This complements previous results achieved in synthesis of general-purpose and signal processors, where data-path design is of utmost importance. In contrast, ASIC designs are often characterized by complex control schemes, to support communication and synchronization with the environment. The combined design of efficient data-path control-unit is the major contribution of this book. Three requirements are important in modeling ASIC designs: concurrency, external synchronization, and detailed timing constraints. The objective of the research work presented here is to develop a hardware model incorporating these requirements as well as synthesis algorithms that operate on this hardware model. The contributions of this book address both the theory and the implementation of algorithm for hardware synthesis.
Dynamic power management is a design methodology aiming at controlling performance and power levels of digital circuits and systems, with the goal of extending the autonomous operation time of battery-powered systems, providing graceful performance degradation when supply energy is limited, and adapting power dissipation to satisfy environmental constraints. Dynamic Power Management: Design Techniques and CAD Tools addresses design techniques and computer-aided design solutions for power management. Different approaches are presented and organized in an order related to their applicability to control-units, macro-blocks, digital circuits and electronic systems, respectively. All approaches are based on the principle of exploiting idleness of circuits, systems, or portions thereof. They involve both the detection of idleness conditions and the freezing of power-consuming activities in the idle components. The book also describes some approaches to system-level power management, including Microsoft's OnNow architecture and the `Advanced Configuration and Power Management' standard proposed by Intel, Microsoft and Toshiba. These approaches migrate power management to the software layer running on hardware platforms, thus providing a flexible and self-configurable solution to adapting the power/performance tradeoff to the needs of mobile (and fixed) computing and communication. Dynamic Power Management: Design Techniques and CAD Tools is of interest to researchers and developers of computer-aided design tools for integrated circuits and systems, as well as to system designers.
“Frazzetto uses psychology, neurology and biological information to explore the ways in which intimacy manifests in different types of relationships. He recounts the stories of eight relationships. . . . Each story puts intimacy and how we experience it on display.” —Concepción De León, The New York Times “Together, Closer examines the way humans relate to each other across a spectrum of relationships from parent-child to platonic friendships and, of course, romantic love.” —The Guardian “An ambitious project . . . Giovanni Frazzetto marries science with art, the most recent discoveries of neuroscience with human stories about intimacy. . . . A clear love of art and science shines from the book.” —The Irish Times For readers of Oliver Sacks and Stephen Grosz, a wondrous, deeply felt book that explores intimacy through the stories of eight relationships, from the author of Joy, Guilt, Anger, Love The bonds we are capable of feeling toward other people—how we know and belong to one another—provide fascinating glimpses into the intricacies of human behavior. Intimacy is that moment when our true identity is revealed to another, when traumas, fears, and ambitions are shared. Through the ordinary stories of eight relationships, Giovanni Frazzetto has woven an extraordinary narrative of togetherness. He shares the details of romantic partners trapped in a long cycle of attraction and rejection, a single woman who finds herself deep in a fictional relationship with a boyfriend she has invented out of frustration with her love life, and a couple absorbed in a years-long clandestine affair. But intimacy can also extend beyond romantic encounters: coping with the loss of a loved one, dealing with overbearing or emotionally distant parents, or celebrating the joys and comforts of our dearest friends. In Together, Closer, Frazzetto unravels the components of intimacy in all of these relationships, illuminating the mysteries, challenges, and pleasures of intimacy through a brilliant mix of storytelling and science.
This title serves as an introduction ans reference for the field, with the papers that have shaped the hardware/software co-design since its inception in the early 90s.
Computer-aided synthesis of digital circuits from behavioral level specifications offers an effective means to deal with increasing complexity of digital hardware design. High Level Synthesis of ASICs Under Timing and Synchronization Constraints addresses both theoretical and practical aspects in the design of a high-level synthesis system that transforms a behavioral level description of hardware to a synchronous logic-level implementation consisting of logic gates and registers. High Level Synthesis of ASICs Under Timing and Synchronization Constraints addresses specific issues in applying high-level synthesis techniques to the design of ASICs. This complements previous results achieved in synthesis of general-purpose and signal processors, where data-path design is of utmost importance. In contrast, ASIC designs are often characterized by complex control schemes, to support communication and synchronization with the environment. The combined design of efficient data-path control-unit is the major contribution of this book. Three requirements are important in modeling ASIC designs: concurrency, external synchronization, and detailed timing constraints. The objective of the research work presented here is to develop a hardware model incorporating these requirements as well as synthesis algorithms that operate on this hardware model. The contributions of this book address both the theory and the implementation of algorithm for hardware synthesis.
Nanosystems use new, nanoscopic electrical and/or mechanical devices which, as constituents of electronic and electromechanical systems, find application primarily in computing, embedded control and biomedical data acquisition. In particular, this book will deal with the characterization and patterning of these materials from an engineering perspective, with the objective of creating operational prototypes and products. The book will integrate various nano technologies on materials, devices and systems and identify key areas and results. The book will describe different design aspects for integrated systems on silicon, as well as on heterogeneous platforms including, but not limited to, electrical, optical, micromechanical and biological components in various forms and mixtures. By associating research topics from differing horizons, the book will provide a unique opportunity to bridge the gap between electronics/electrical engineering and materials science. The book will include topics at the intersection of these disciplines, and will interface with computer science, biology and medicine.
Dynamic power management is a design methodology aiming at controlling performance and power levels of digital circuits and systems, with the goal of extending the autonomous operation time of battery-powered systems, providing graceful performance degradation when supply energy is limited, and adapting power dissipation to satisfy environmental constraints. Dynamic Power Management: Design Techniques and CAD Tools addresses design techniques and computer-aided design solutions for power management. Different approaches are presented and organized in an order related to their applicability to control-units, macro-blocks, digital circuits and electronic systems, respectively. All approaches are based on the principle of exploiting idleness of circuits, systems, or portions thereof. They involve both the detection of idleness conditions and the freezing of power-consuming activities in the idle components. The book also describes some approaches to system-level power management, including Microsoft's OnNow architecture and the `Advanced Configuration and Power Management' standard proposed by Intel, Microsoft and Toshiba. These approaches migrate power management to the software layer running on hardware platforms, thus providing a flexible and self-configurable solution to adapting the power/performance tradeoff to the needs of mobile (and fixed) computing and communication. Dynamic Power Management: Design Techniques and CAD Tools is of interest to researchers and developers of computer-aided design tools for integrated circuits and systems, as well as to system designers.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.