To design and develop fast and effective microwave wireless systems today involves addressing the three different 'levels': Device, circuit, and system. This book presents the links and interactions between the three different levels rather than providing just a comprehensive coverage of one specific level. With the aim of overcoming the sectional knowledge of microwave engineers, this will be the first book focused on explaining how the three different levels interact by taking the reader on a journey through the different levels going from the theoretical background to the practical applications. - Explains the links and interactions between the three different design levels of wireless communication transmitters: device, circuit, and system - Presents state-of-the-art, challenges, and future trends in the field of wireless communication systems - Covers all aspects of both mature and cutting-edge technologies for semiconductor devices for wireless communication applications - Many circuit designs outlining the limitations derived from the available transistor technologies and system requirements - Explains how new microwave measurement techniques can represent an essential tool for microwave modellers and designers
The first chapter is intended primarily for those readers who are new to the de-embedding concept. To serve as a gateway into this fascinating but also challenging field of knowledge, the present chapter will show how to extract the full potential of the microwave de-embedding concept, from the theoretical background to practical applications. As a broad definition, de-embedding can be regarded as the mathematical process by which electrical reference planes can be set to desired locations. Its importance originates from the fact that electrical characteristics are not always directly measurable at the reference planes of interest. Hence, moving the electrical reference planes mathematically enables one to discover precious information. With the aim to provide an introductory and comprehensive overview of the de-embedding concept, this chapter discusses its effectiveness for different purposes: measurements, modeling, and design. Experimental results will be analyzed to act as a valuable support for gaining a clear-cut understanding.
Drawing on over twenty years of teaching experience, this comprehensive yet self-contained text provides an in-depth introduction to the field of integrated microwave electronics. Ideal for a first course on the subject, it covers essential topics such as passive components and transistors, linear, low-noise and power amplifiers, and microwave measurements. An entire chapter is devoted to CAD techniques for analysis and design, covering examples of easy-to-medium difficulty for both linear and non-linear subsystems, and supported online by ADS and AWR project files. More advanced topics are also covered, providing an up-to-date overview of compound semiconductor technologies and treatment of electromagnetic issues and models. Readers can test their knowledge with end-of-chapter questions and numerical problems, and solutions and lecture slides are available online for instructors. This is essential reading for graduate and senior undergraduate students taking courses in microwave, radio-frequency and high-frequency electronics, as well as professional microwave engineers.
Derived from the renowned multi-volume International Encyclopaedia of Laws, this convenient volume provides comprehensive analysis of the law affecting the physician-patient relationship in Italy. Cutting across the traditional compartments with which lawyers are familiar, medical law is concerned with issues arising from this relationship, and not with the many wider juridical relations involved in the broader field of health care law. After a general introduction, the book systematically describes law related to the medical profession, proceeding from training, licensing, and other aspects of access to the profession, through disciplinary and professional liability and medical ethics considerations and quality assurance, to such aspects of the physician-patient relationship as rights and duties of physicians and patients, consent, privacy, and access to medical records. Also covered are specific issues such as organ transplants, human medical research, abortion, and euthanasia, as well as matters dealing with the physician in relation to other health care providers, health care insurance, and the health care system. Succinct and practical, this book will prove to be of great value to professional organizations of physicians, nurses, hospitals, and relevant government agencies. Lawyers representing parties with interests in Italy will welcome this very useful guide, and academics and researchers will appreciate its comparative value asa contribution to the study of medical law in the international context.
The first chapter is intended primarily for those readers who are new to the de-embedding concept. To serve as a gateway into this fascinating but also challenging field of knowledge, the present chapter will show how to extract the full potential of the microwave de-embedding concept, from the theoretical background to practical applications. As a broad definition, de-embedding can be regarded as the mathematical process by which electrical reference planes can be set to desired locations. Its importance originates from the fact that electrical characteristics are not always directly measurable at the reference planes of interest. Hence, moving the electrical reference planes mathematically enables one to discover precious information. With the aim to provide an introductory and comprehensive overview of the de-embedding concept, this chapter discusses its effectiveness for different purposes: measurements, modeling, and design. Experimental results will be analyzed to act as a valuable support for gaining a clear-cut understanding.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.