This book focuses on the major applications of martingales to the geometry of Banach spaces, and a substantial discussion of harmonic analysis in Banach space valued Hardy spaces is also presented. It covers exciting links between super-reflexivity and some metric spaces related to computer science, as well as an outline of the recently developed theory of non-commutative martingales, which has natural connections with quantum physics and quantum information theory. Requiring few prerequisites and providing fully detailed proofs for the main results, this self-contained study is accessible to graduate students with a basic knowledge of real and complex analysis and functional analysis. Chapters can be read independently, with each building from the introductory notes, and the diversity of topics included also means this book can serve as the basis for a variety of graduate courses.
This book focuses on the major applications of martingales to the geometry of Banach spaces, and a substantial discussion of harmonic analysis in Banach space valued Hardy spaces is also presented. It covers exciting links between super-reflexivity and some metric spaces related to computer science, as well as an outline of the recently developed theory of non-commutative martingales, which has natural connections with quantum physics and quantum information theory. Requiring few prerequisites and providing fully detailed proofs for the main results, this self-contained study is accessible to graduate students with a basic knowledge of real and complex analysis and functional analysis. Chapters can be read independently, with each building from the introductory notes, and the diversity of topics included also means this book can serve as the basis for a variety of graduate courses.
Vector Quantization, a pioneering discretization method based on nearest neighbor search, emerged in the 1950s primarily in signal processing, electrical engineering, and information theory. Later in the 1960s, it evolved into an automatic classification technique for generating prototypes of extensive datasets. In modern terms, it can be recognized as a seminal contribution to unsupervised learning through the k-means clustering algorithm in data science. In contrast, Functional Quantization, a more recent area of study dating back to the early 2000s, focuses on the quantization of continuous-time stochastic processes viewed as random vectors in Banach function spaces. This book distinguishes itself by delving into the quantization of random vectors with values in a Banach space—a unique feature of its content. Its main objectives are twofold: first, to offer a comprehensive and cohesive overview of the latest developments as well as several new results in optimal quantization theory, spanning both finite and infinite dimensions, building upon the advancements detailed in Graf and Luschgy's Lecture Notes volume. Secondly, it serves to demonstrate how optimal quantization can be employed as a space discretization method within probability theory and numerical probability, particularly in fields like quantitative finance. The main applications to numerical probability are the controlled approximation of regular and conditional expectations by quantization-based cubature formulas, with applications to time-space discretization of Markov processes, typically Brownian diffusions, by quantization trees. While primarily catering to mathematicians specializing in probability theory and numerical probability, this monograph also holds relevance for data scientists, electrical engineers involved in data transmission, and professionals in economics and logistics who are intrigued by optimal allocation problems.
Giles Deleuze (1925-1995) was Professor of Philosophy at the University of Paris VIII. He is a key figure in poststructuralism and one of the most influential philosophers of the twentieth century. In Foucault, Deleuze presents one of the most incisive and productive analyses of the work of Michel Foucault. This is a crucial examination of the philosophical foundations and principal themes of Foucault's work, providing a rigorous engagement with Foucault's views on knowledge, punishment, power, and the nature of subjectivity. Translated by Seßn Hand. >
This series reports on new developments in mathematical research and teaching - quickly, informally and at a high level. The type of material considered for publication includes 1. Research monographs 2. Lectures on a new field or presentations of a new angle in a classical field 3. Summer schools and intensive courses on topics of current research. Texts which are out of print but still in demand may also be considered. The timeliness of a manuscript is sometimes more important than its form, which might be preliminary or tentative. Details of the editorial policy can be found on the inside front-cover of a current volume. Manuscripts should be submitted in camera-ready form according to Springer-Verlag's specification: technical instructions will be sent on request. TEX macros may be found at: http://www.springer.de/math/authors/b- tex.html Select the version of TEX you use and then click on "Monographs". A subject index should be included. We recommend contacting the publisher or the series editors at an early stage of your project. Addresses are given on the inside back-cover.
These notes revolve around three similarity problems, appearing in three dif ferent contexts, but all dealing with the space B(H) of all bounded operators on a complex Hilbert space H. The first one deals with group representations, the second one with C* -algebras and the third one with the disc algebra. We describe them in detail in the introduction which follows. This volume is devoted to the background necessary to understand these three open problems, to the solutions that are known in some special cases and to numerous related concepts, results, counterexamples or extensions which their investigation has generated. For instance, we are naturally lead to study various Banach spaces formed by the matrix coefficients of group representations. Furthermore, we discuss the closely connected Schur multipliers and Grothendieck's striking characterization of those which act boundedly on B(H). While the three problems seem different, it is possible to place them in a common framework using the key concept of "complete boundedness", which we present in detail. In some sense, completely bounded maps can also be viewed as spaces of "coefficients" of C*-algebraic representations, if we allow "B(H) valued coefficients", this is the content of the fundamental factorization property of these maps, which plays a central role in this volume. Using this notion, the three problems can all be formulated as asking whether "boundedness" implies "complete boundedness" for linear maps satisfying cer tain additional algebraic identities.
In the recently developed duality theory of operator spaces, bounded operators are replaced by 'completely bounded' ones, isomorphism by 'complete isomorphisms' and Banach spaces by 'operator spaces'. This allows for distinguishing between the various ways in which a given Banach space can be embedded isometrically into [italic capital]B([italic capital]H) (with H being Hilbert). One of the main results is the observation that there is a central object in this class: there is a unique self dual Hilbertian operator space (which we denote by [italic capitals]OH) which seems to play the same central role in the category of operator spaces that Hilbert spaces play in the category of Banach spaces.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.