In the last decade DNA sequencing costs have decreased over a magnitude, largely because of increasing throughput by incremental advances in tools, technologies and process improvements. Further cost reductions in this and in related proteomics technologies are expected as a result of the development of new high-throughput techniques and the computational machinery needed to analyze data generated. Automation in Proteomics & Genomics: An Engineering Case-Based Approach describes the automation technology currently in the areas of analysis, design, and integration, as well as providing basic biology concepts behind proteomics and genomics. The book also discusses the current technological limitations that can be viewed as an emerging market rather than a research bottleneck. Topics covered include: molecular biology fundamentals: from ‘blueprint’ (DNA) to ‘task list’ (RNA) to ‘molecular machine’ (protein); proteomics methods and technologies; modelling protein networks and interactions analysis via automation: DNA sequencing; microarrays and other parallelization technologies; protein characterization and identification; protein interaction and gene regulatory networks design via automation: DNA synthesis; RNA by design; building protein libraries; synthetic networks integration: multiple modalities; computational and experimental methods; trends in automation for genomics and proteomics new enabling technologies and future applications Automation in Proteomics & Genomics: An Engineering Case-Based Approach is an essential guide to the current capabilities and challenges of high-throughput analysis of genes and proteins for bioinformaticians, engineers, chemists, and biologists interested in developing a cross-discipline problem-solving based approach to systems biology.
In the last decade DNA sequencing costs have decreased over a magnitude, largely because of increasing throughput by incremental advances in tools, technologies and process improvements. Further cost reductions in this and in related proteomics technologies are expected as a result of the development of new high-throughput techniques and the computational machinery needed to analyze data generated. Automation in Proteomics & Genomics: An Engineering Case-Based Approach describes the automation technology currently in the areas of analysis, design, and integration, as well as providing basic biology concepts behind proteomics and genomics. The book also discusses the current technological limitations that can be viewed as an emerging market rather than a research bottleneck. Topics covered include: molecular biology fundamentals: from ‘blueprint’ (DNA) to ‘task list’ (RNA) to ‘molecular machine’ (protein); proteomics methods and technologies; modelling protein networks and interactions analysis via automation: DNA sequencing; microarrays and other parallelization technologies; protein characterization and identification; protein interaction and gene regulatory networks design via automation: DNA synthesis; RNA by design; building protein libraries; synthetic networks integration: multiple modalities; computational and experimental methods; trends in automation for genomics and proteomics new enabling technologies and future applications Automation in Proteomics & Genomics: An Engineering Case-Based Approach is an essential guide to the current capabilities and challenges of high-throughput analysis of genes and proteins for bioinformaticians, engineers, chemists, and biologists interested in developing a cross-discipline problem-solving based approach to systems biology.
Powerful engineering tools can help solve today's complex biological and biomedical research challenges - and this first-of-its-kind guide is paving the way . This trail-blazing work gives engineers a quantitative systems approach to bioinformatics research using computational tools drawn from technical disciplines. It presents biological processes in an engineering context to help engineers use their technical skills in solving novel biological problems and also to facilitate reverse engineering from biology in developing synthetic biological devices.
This trailblazing guide gives biological and biomedical research engineers a quantitative systems approach to bioinformatics research using computational tools drawn from technical disciplines. A major milestone in systems biology, this groundbreaking work points engineers to new frontiers in the convergence of engineering and biological research.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.