The behaviour of foundation is closely interlinked with the behaviour of soil supporting it. This book develops a clear understanding of the soil parameters, bearing capacity, settlement and deformation, and describes the practical methods of designing structural foundations. The book analyses the various types of foundations, namely isolated footing, strip foundation and raft foundation, and their structural design. It discusses piled foundation, the types and behaviour of piles in various soils (cohesive and cohesionless), and their bearing capacity. The book also includes the analysis, design and construction of diaphragm wall foundation used in highway and railway tunnels, multi-storey basement and underground metro stations. In addition, it includes the analysis and design of sheet piling foundation, retaining wall and bridge pier foundation. KEY FEATURES : Demonstrates both BS codes of practice and Eurocodes to analyse soil and structural design of foundations and compares the results Includes a number of examples on foundations Provides structural design calculations with step-by-step procedures Gives sufficient numbers of relevant sketches, figures and tables to reinforce the concepts This book is suitable for the senior undergraduate students of civil engineering and postgraduate students specializing in geotechnical engineering. Besides, practising engineers will also find this book useful.
Distributed Systems: An Algorithmic Approach, Second Edition provides a balanced and straightforward treatment of the underlying theory and practical applications of distributed computing. As in the previous version, the language is kept as unobscured as possible-clarity is given priority over mathematical formalism. This easily digestible text:Fea
The book has been designed to cater to the real time problems faced by the aspirants who want to succeed in National Talent Search Examination, Olympiads, and Scholarship-cum-Merit Tests conducted by various State Boards etc. It is strictly based on the latest pattern and curriculum issued from the NCERT. The book consists of two sections namely Mental Ability Test (MAT) and Scholastic Ability Test (SAT). The concepts are explained with solved examples and Multiple Choice Questions with Answer Key and Hints & Solutions are given to enhance the problem solving skills of students. Last two years' Solved Papers are included to help understand the difficulty level and grasp the structure of questions asked in the exam and Four Practice Sets are included in CD for thorough practice. Salient Features: Concepts are explained through solved examples MCQs with Answer Key and Hints & Solutions Solved Papers and Practice Test Papers Usage of simple and lucid language
In the book, the author has provided the CAT Aspirants with detailed concepts and problem solving skills. Three Assessments after every section have been added for thorough practice. In every chapter approx. 100 MCQs are given with Answer Key and Hints & Solutions. Fully Solved CAT 2014 and 1 Mock Test Paper help to understand the pattern of exam and prove to be very useful for practice. The contents have been written in coherent and systematic manner. The book has been divided into four section Quantitative Aptitude, Data Interpretation, Logical Reasoning and Verbal Ability and Reading Comprehension.
This second volume of Energy Resources and Systems is focused on renewable energy resources. Renewable energy mainly comes from wind, solar, hydropower, geothermal, ocean, bioenergy, ethanol and hydrogen. Each of these energy resources is important and growing. For example, high-head hydroelectric energy is a well established energy resource and already contributes about 20% of the world’s electricity. Some countries have significant high-head resources and produce the bulk of their electrical power by this method. However, the bulk of the world’s high-head hydroelectric resources have not been exploited, particularly by the underdeveloped countries. Low-head hydroelectric is unexploited and has the potential to be a growth area. Wind energy is the fastest growing of the renewable energy resources for the electricity generation. Solar energy is a popular renewable energy resource. Geothermal energy is viable near volcanic areas. Bioenergy and ethanol have grown in recent years primarily due to changes in public policy meant to encourage its usage. Energy policies stimulated the growth of ethanol, for example, with the unintended side effect of rise in food prices. Hydrogen has been pushed as a transportation fuel. The authors want to provide a comprehensive series of texts on the interlinking of the nature of energy resources, the systems that utilize them, the environmental effects, the socioeconomic impact, the political aspects and governing policies. Volume 1 on Fundamentals and Non Renewable Resources was published in 2009. It blends fundamental concepts with an understanding of the non-renewable resources that dominate today’s society. The authors are now working on Volume 3, on nuclear advanced energy resources and nuclear batteries, consists of fusion, space power systems, nuclear energy conversion, nuclear batteries and advanced power, fuel cells and energy storage. Volume 4 will cover environmental effects, remediation and policy. Solutions to providing long term, stable and economical energy is a complex problem, which links social, economical, technical and environmental issues. It is the goal of the four volume Energy Resources and Systems series to tell the whole story and provide the background required by students of energy to understand the complex nature of the problem and the importance of linking social, economical, technical and environmental issues.
Ideal for college students in intermediate finance courses, this book uniquely applies mathematical formulas to teach the underpinnings of financial and lending decisions, covering common applications in real estate, capital budgeting, and commercial loans. An updated and expanded version of the time-honored classic text on financial math, this book provides, in one place, a complete and practical treatment of the four primary venues for finance: commercial lending, financial formulas, mortgage lending, and resource allocation or capital budgeting techniques. With an emphasis on understanding the principles involved rather than blind reliance on formulas, the book provides rigorous and thorough explanations of the mathematical calculations used in determining the time value of money, valuation of loans by commercial banks, valuation of mortgages, and the cost of capital and capital budgeting techniques for single as well as mutually exclusive projects. This new edition devotes an entire chapter to a method of evaluating mutually exclusive projects without resorting to any imposed conditions. Two chapters not found in the previous edition address special topics in finance, including a novel and innovative way to approach amortization tables and the time value of money for cash flows when they increase geometrically or arithmetically. This new edition also features helpful how-to sections on Excel applications at the end of each appropriate chapter.
One of the most well-known of all network optimization problems is the shortest path problem, where a shortest connection between two locations in a road network is to be found. This problem is the basis of route planners in vehicles and on the Internet. Networks are very common structures; they consist primarily of a ?nite number of locations (points, nodes), together with a number of links (edges, arcs, connections) between the locations. Very often a certain number is attached to the links, expressing the distance or the cost between the end points of that connection. Networks occur in an extremely wide range of applications, among them are: road networks; cable networks; human relations networks; project scheduling networks; production networks; distribution networks; neural networks; networks of atoms in molecules. In all these cases there are “objects” and “relations” between the objects. A n- work optimization problem is actually nothing else than the problem of ?nding a subset of the objects and the relations, such that a certain optimization objective is satis?ed.
The third edition of this text focuses on the basic concepts of control systems as before. It presents them in a succinct style and with about 400 worked-out examples. The study of control systems basically entails a knowledge of different kinds of systems that are presented via their transfer functions in the time domain and frequency domain. A major part of this study involves a knowledge of stability of systems in those domains. But then, a knowledge of study of multiple input multiple output (MIMO) systems as well as digital systems is also necessary. All these have been dealt with in lucid, student-friendly manner and with the assumption that the student has only HS-level mathematics background. NEW TO THIS EDITION • Quick reading guide. • Introduction of relevant mathematics wherever needed. • Emphasis on MCQs, which demand knowledge of intricate concepts. • Graphs and diagrams to illustrate concepts. TARGET AUDIENCE • B.Tech Electrical Engineering • B.Tech Electronics and Communication Engineering • B.Tech Instrumentation and Control Engineering • B.Tech Applied Electronics and Instrumentation Engineering • B.Tech Computer Science and Engineering
In order to design and build computers that achieve and sustain high performance, it is essential that reliability issues be considered care fully. The problem has several aspects. Certainly, considering reliability implies that an engineer must be able to analyze how design decisions affect the incidence of failure. For instance, in order design reliable inte gritted circuits, it is necessary to analyze how decisions regarding design rules affect the yield, i.e., the percentage of functional chips obtained by the manufacturing process. Of equal importance in producing reliable computers is the detection of failures in its Very Large Scale Integrated (VLSI) circuit components, caused by errors in the design specification, implementation, or manufacturing processes. Design verification involves the checking of the specification of a design for correctness prior to carrying out an implementation. Implementation verification ensures that the manual design or automatic synthesis process is correct, i.e., the mask-level description correctly implements the specification. Manufacture test involves the checking of the complex fabrication process for correctness, i.e., ensuring that there are no manufacturing defects in the integrated circuit. It should be noted that all the above verification mechanisms deal not only with verifying the functionality of the integrated circuit but also its performance.
A Complete Guide to M.C.Q for Class X has been written in accordance with the latest syllabus of Science prescribed by the Central Board of Secondary Education (CBSE), New Delhi. The present book will help you to self-understand the subject in a better way. Unique features of this book : 1. About 1200 Q & A. 2. Written in very simple, easy to understand student friendly language. 3. All chapters of science book are covered. 4. All questions are made at par with CBSE question standard. 5. Every question has four options and they are very informative though only one will be the correct answer. 6. All questions are answered at last of each chapter. 7. Every answer is explained in detail. 8. Other than correct answer all other options are also discussed to understand why they are not the correct option for that question. 9. The answer is written in a comprehensive style in most cases with well-illustrated and labeled diagrams where ever it was required. I hope this book will prove very useful to the students and teachers. Suggestions and constructive criticism for the further improvement of the book would be gratefully acknowledged and should incorporate in coming editions.
This book provides a comprehensive overview of how fractal analytics can lead to the extraction of interesting features from the complex electroencephalograph (EEG) signals generated by Hindustani classical music. It particularly focuses on how the brain responses to the emotional attributes of Hindustani classical music that have been long been a source of discussion for musicologists and psychologists. Using robust scientific techniques that are capable of looking into the most intricate dynamics of the complex EEG signals, it deciphers the human brain’s response to different ragas of Hindustani classical music, shedding new light on what happens inside the performer’s brain when they are mentally composing the imagery of a particular raga. It also explores the much- debated issue in the musical fraternity of whether there are any universal cues in music that make it identifiable for people throughout the world, and if so, what are the neural correlates associated with the universal cues? This book is of interest to researchers and scholars of music and the brain, nonlinear science, music cognition, music signal processing and music information retrieval. In addition, researchers in the field of nonlinear biomedical signal processing and music signal analysis benefit from this book.
This is one of the best available graduate-level textbooks on electronic transport at the nanoscale. Its unique feature is providing a thorough and completely self-contained treatment of several theoretical formalisms for treating the transport problem. As such, the book is useful not only for the graduate students working in the field of nanoscale electrical transport, but also for the researchers who wish to expand their knowledge of various fundamental issues associated with this rapidly developing field. Of particular note are deep physical insights accompanying the rigorous mathematical derivations in each of the chapters, as well as the clear statement of all the approximations involved in a particular theoretical formalism. This winning combination makes the book very accessible to a reader with basic knowledge of quantum mechanics, solid state theory and thermodynamics/statistical mechanics. I give this book the highest recommendation.' [Read Full Review]Serfei A EgorovUniveristy of Virginia, USAThis book is aimed at senior undergraduates, graduate students and researchers interested in quantitative understanding and modeling of nanomaterial and device physics. With the rapid slow-down of semiconductor scaling that drove information technology for decades, there is a pressing need to understand and model electron flow at its fundamental molecular limits. The purpose of this book is to enable such a deconstruction needed to design the next generation memory, logic, sensor and communication elements. Through numerous case studies and topical examples relating to emerging technology, this book connects 'top down' classical device physics taught in electrical engineering classes with 'bottom up' quantum and many-body transport physics taught in physics and chemistry. The book assumes no more than a nodding acquaintance with quantum mechanics, in addition to knowledge of freshman level mathematics. Segments of this book are useful as a textbook for a course in nano-electronics.
This textbook offers a complete and rigorous presentation of the fundamentals and applications of wave optics. The material of the book covers topics on wave nature of light—reflection, refraction, polarisation, diffraction, dispersion and scattering of electromagnetic waves. Interference phenomenon is discussed both by division of wavefront and by division of amplitude. Diffraction is classified as Fresnel diffraction and Fraunhofer diffraction. The discussion on Fraunhofer diffraction has been used to explain the theory and resolving power of optical instruments. The role of phenomena of dispersion and scattering of light has been lucidly explained in the field of communication of information, its quality and content. The last three chapters are devoted to the study of the recently developed modern topics—lasers, holography, and fibre optics—all of which have opened up immense opportunities for new applications in almost all branches of science and engineering. Though the book is intended for the undergraduate students of physics—both honours and general courses—it will also be useful to candidates aspiring to sit the competitive examinations. KEY FEATURES : Presents interactive text interspersed with in-text questions to enable students to shift focus on active learning. Uses access devices such as expected learning outcomes and practice exercises for directed teaching–learning. Includes numerous worked-out examples to illustrate the concepts and provides review questions to test the students’ understanding of the subject. Gives chapter-end summary for quick revision of the important results.
Dynamic Response of Advanced Ceramics Discover fundamental concepts and recent advances in experimental, analytical, and computational research into the dynamic behavior of ceramics In Dynamic Response of Advanced Ceramics, an accomplished team of internationally renowned researchers delivers a comprehensive exploration of foundational and advanced concepts in experimental, analytical, and computational aspects of the dynamic behavior of advanced structural ceramics and transparent materials. The book discusses new techniques used for determination of dynamic hardness and dynamic fracture toughness, as well as edge-on-impact experiments for imaging evolving damage patterns at high impact velocities. The authors also include descriptions of the dynamic deformation behavior of icosahedral ceramics and the dynamic behavior of several transparent materials, like chemically strengthened glass and glass ceramics. The developments discussed within the book have applications in everything from high-speed machining to cutting, grinding, and blast protection. Readers will also benefit from a presentation of emerging trends and directions in research on this subject as well as current challenges in experimental and computational domains, including: An introduction to the history of ceramic materials and their dynamic behavior, including examples of material response to high-strain-rate loading An exploration of high-strain-rate experimental techniques, like 1D elastic stress-wave propagation techniques, shock waves, and impact testing Discussions of the static and dynamic responses of ceramics and the shock response of brittle solids An overview of deformation mechanisms during projectile impact on a confined ceramic, including damage evolution during the nonpenetration and penetration phases. Perfect for researchers, scientists, and engineers working on ballistic impact and shock response of brittle materials, Dynamic Response of Advanced Ceramics will also earn a place in the libraries of industry personnel studying impact-resistant solutions for a variety of applications.
Provides a thorough understanding of the fundamental concepts and applications of colloid and interface science. It deals with the colloid chemistry and interfacial phenomena at both fluid-fluid and solid-fluid interfaces. The emerging areas of colloid and interface science such as nanomaterials and nanotechnology are also discussed.
The Book Attempts To Present A Comprehensive View Of Extractive Metallurgy, Especially Principles Of Extractive Metallurgy In A Concise Form. This Is The First Book In This Area Which Attempts To Do It. It Has Been Written In Textbook Style. It Presents The Various Concepts Step By Step, Shows Their Importance, Deals With Elementary Quantitative Formulations, And Illustrates Through Quantitative And Qualitative Informations. The Approach Is Such That Even Undergraduate Students Would Be Able To Follow The Topics Without Much Difficulty And Without Much Of A Background In Specialized Subjects. This Is Considered To Be A Very Useful Approach In This Area Of Technology. Moreover The Inter-Disciplinary Nature Of The Subject Has Been Duely Brought Out.While Teaching Concerned Course(S) In The Undergraduate And Postgraduate Level The Authors Felt The Need Of Such A Book. The Authors Found The Books Available On The Subject Did Not Fulfill The Requirements. No Other Book Was Concerned With All Relevant Concepts. Most Of Them Laid Emphasis Either On Thermodynamic Aspects Or On Discussing Unit Processes. Transport Phenomena Are Dealt With In Entirely Different Books. Reactor Concepts Were Again Lying In Chemical Engineering Texts. The Authors Tried To Harmonize And Synthesize The Concepts In Elementary Terms For Metallurgists.The Present Book Contains A Brief Descriptive Summary Of Some Important Metallurgical Unit Processes. Subsequently It Discusses Not Only Physical Chemistry Of Metallurgical Reactions And Processes But Also Rate Phenomena Including Heat And Mass Transfer, Fluid Flow, Mass And Energy Balance, And Elements Of Reactor Engineering. A Variety Of Scientific And Engineering Aspects Of Unit Processes Have Been Discussed With Stress On The Basic Principles All Throughout. There Is An Attempt To Introduce, As Much As Possible, Quantitative Treatments And Engineering Estimates. The Latter May Often Be Approximate From The Point Of View Of Theory But Yields Results That Are Very Valuable To Both Practicing Metallurgists As Well As Others.
This book is unique in that it brings together published viscosity data, experimental methods, theoretical, correlation and predictive procedures in a single volume. The readers will get a better understanding of why various methods are used for measuring viscosity of different types of liquids and why an experimental method is dependent on fluid characteristics, such as Newtonian or non-Newtonian fluids.
Sequential analysis refers to the body of statistical theory and methods where the sample size may depend in a random manner on the accumulating data. A formal theory in which optimal tests are derived for simple statistical hypotheses in such a framework was developed by Abraham Wald in the early 1
In the lifetimes of the authors, the world and especially the United States have received three significant “wake-up calls” on energy production and consumption. The first of these occurred on October 15, 1973 when the Yom Kippur War began with an attack by Syria and Egypt on Israel. The United States and many western countries supported Israel. Because of the western support of Israel, several Arab oil exporting nations imposed an oil embargo on the west. These nations withheld five million barrels of oil per day. Other countries made up about one million barrels of oil per day but the net loss of four million barrels of oil production per day extended through March of 1974. This represented 7% of the free world’s (i. e. , excluding the USSR) oil production. In 1972 the price of crude oil was about $3. 00 per barrel and by the end of 1974 the price of oil had risen by a factor of 4 to over $12. 00. This resulted in one of the worst recessions in the post World War II era. As a result, there was a movement in the United States to become energy independent. At that time the United States imported about one third of its oil (about five million barrels per day). After the embargo was lifted, the world chose to ignore the “wake-up call” and went on with business as usual.
This book is written in a lucid and systematic way for advanced postgraduates and researchers studying applied mathematics, plasma physics, nonlinear differential equations, nonlinear optics, and other engineering branches where nonlinear wave phenomena is essential.In sequential order of the book's development, readers will understand basic plasmas with elementary definitions of magnetized and unmagnetized plasmas, plasma modeling, dusty plasma and quantum plasma. Following which, the book describes linear and nonlinear waves, solitons, shocks and other wave phenomena, while solutions to common nonlinear wave equations are derived via standard techniques. Readers are introduced to elementary perturbation and non-perturbation methods. They will discover several evolution equations in different plasma situations as well as the properties of solitons in those environments. Pertaining to those equations, readers will learn about their higher order corrections, as well as their different forms and solutions in non-planar geometry. The book offers further studies on different types of collisions between solitons in plasma environment, phenomena of soliton turbulence as a consequence of multi-soliton interactions, properties of large amplitude solitary waves which are discovered via non-perturbative Sagdeev's Pseudopotential Approach, as well as the speed and shape of solitons. Finally, the book reveals possible future developments of research in this rich field.
This text provides the fundamentals of the emerging technology of remote sensing combined with GIS. It provides sufficient knowledge of these technologies applied in different fields avoiding the voluminous details required at research level.
As multi-phase metal/alloy systems and polymer, ceramic, or metal matrix composite materials are increasingly being used in industry, the science and technology for these heterogeneous materials has advanced rapidly. By extending analytical and numerical models, engineers can analyze failure characteristics of the materials before they are integrat
Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow 'with' and 'without' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists. - Provides a step-by-step approach to develop deep learning models - Presents case studies showing end-to-end implementation (source codes: available upon request)
This text/reference represents the first balanced treatment of graphical and analytical methods for kinematic analysis and synthesis of linkages (planar and spatial) and higher-pair mechanisms (cams and gears) in a single-volume format. A significant amount of excellent German literature in the field that previously was not available in English provides extra insight into the subject. Plenty of solved problems and exercise problems are included to sharpen your skills and demonstrate how theory is put into practice.
Learn how to apply cognitive principles to the problems of computer vision Computational Models for Cognitive Vision formulates the computational models for the cognitive principles found in biological vision, and applies those models to computer vision tasks. Such principles include perceptual grouping, attention, visual quality and aesthetics, knowledge-based interpretation and learning, to name a few. The author’s ultimate goal is to provide a framework for creation of a machine vision system with the capability and versatility of the human vision. Written by Dr. Hiranmay Ghosh, the book takes readers through the basic principles and the computational models for cognitive vision, Bayesian reasoning for perception and cognition, and other related topics, before establishing the relationship of cognitive vision with the multi-disciplinary field broadly referred to as “artificial intelligence”. The principles are illustrated with diverse application examples in computer vision, such as computational photography, digital heritage and social robots. The author concludes with suggestions for future research and salient observations about the state of the field of cognitive vision. Other topics covered in the book include: · knowledge representation techniques · evolution of cognitive architectures · deep learning approaches for visual cognition Undergraduate students, graduate students, engineers, and researchers interested in cognitive vision will consider this an indispensable and practical resource in the development and study of computer vision.
Long-memory processes are known to play an important part in many areas of science and technology, including physics, geophysics, hydrology, telecommunications, economics, finance, climatology, and network engineering. In the last 20 years enormous progress has been made in understanding the probabilistic foundations and statistical principles of such processes. This book provides a timely and comprehensive review, including a thorough discussion of mathematical and probabilistic foundations and statistical methods, emphasizing their practical motivation and mathematical justification. Proofs of the main theorems are provided and data examples illustrate practical aspects. This book will be a valuable resource for researchers and graduate students in statistics, mathematics, econometrics and other quantitative areas, as well as for practitioners and applied researchers who need to analyze data in which long memory, power laws, self-similar scaling or fractal properties are relevant.
Proposes computational models of human memory and learning using a brain-computer interfacing (BCI) approach Human memory modeling is important from two perspectives. First, the precise fitting of the model to an individual's short-term or working memory may help in predicting memory performance of the subject in future. Second, memory models provide a biological insight to the encoding and recall mechanisms undertaken by the neurons present in active brain lobes, participating in the memorization process. This book models human memory from a cognitive standpoint by utilizing brain activations acquired from the cortex by electroencephalographic (EEG) and functional near-infrared-spectroscopic (f-NIRs) means. Cognitive Modeling of Human Memory and Learning A Non-invasive Brain-Computer Interfacing Approach begins with an overview of the early models of memory. The authors then propose a simplistic model of Working Memory (WM) built with fuzzy Hebbian learning. A second perspective of memory models is concerned with Short-Term Memory (STM)-modeling in the context of 2-dimensional object-shape reconstruction from visually examined memorized instances. A third model assesses the subjective motor learning skill in driving from erroneous motor actions. Other models introduce a novel strategy of designing a two-layered deep Long Short-Term Memory (LSTM) classifier network and also deal with cognitive load assessment in motor learning tasks associated with driving. The book ends with concluding remarks based on principles and experimental results acquired in previous chapters. Examines the scope of computational models of memory and learning with special emphasis on classification of memory tasks by deep learning-based models Proposes two algorithms of type-2 fuzzy reasoning: Interval Type-2 fuzzy reasoning (IT2FR) and General Type-2 Fuzzy Sets (GT2FS) Considers three classes of cognitive loads in the motor learning tasks for driving learners Cognitive Modeling of Human Memory and Learning A Non-invasive Brain-Computer Interfacing Approach will appeal to researchers in cognitive neuro-science and human/brain-computer interfaces. It is also beneficial to graduate students of computer science/electrical/electronic engineering.
Mathematical Codebook to Navigate Through the Fast-changing AI Landscape KEY FEATURES ● Access to industry-recognized AI methodology and deep learning mathematics with simple-to-understand examples. ● Encompasses MDP Modeling, the Bellman Equation, Auto-regressive Models, BERT, and Transformers. ● Detailed, line-by-line diagrams of algorithms, and the mathematical computations they perform. DESCRIPTION To construct a system that may be referred to as having ‘Artificial Intelligence,’ it is important to develop the capacity to design algorithms capable of performing data-based automated decision-making in conditions of uncertainty. Now, to accomplish this goal, one needs to have an in-depth understanding of the more sophisticated components of linear algebra, vector calculus, probability, and statistics. This book walks you through every mathematical algorithm, as well as its architecture, its operation, and its design so that you can understand how any artificial intelligence system operates. This book will teach you the common terminologies used in artificial intelligence such as models, data, parameters of models, and dependent and independent variables. The Bayesian linear regression, the Gaussian mixture model, the stochastic gradient descent, and the backpropagation algorithms are explored with implementation beginning from scratch. The vast majority of the sophisticated mathematics required for complicated AI computations such as autoregressive models, cycle GANs, and CNN optimization are explained and compared. You will acquire knowledge that extends beyond mathematics while reading this book. Specifically, you will become familiar with numerous AI training methods, various NLP tasks, and the process of reducing the dimensionality of data. WHAT YOU WILL LEARN ● Learn to think like a professional data scientist by picking the best-performing AI algorithms. ● Expand your mathematical horizons to include the most cutting-edge AI methods. ● Learn about Transformer Networks, improving CNN performance, dimensionality reduction, and generative models. ● Explore several neural network designs as a starting point for constructing your own NLP and Computer Vision architecture. ● Create specialized loss functions and tailor-made AI algorithms for a given business application. WHO THIS BOOK IS FOR Everyone interested in artificial intelligence and its computational foundations, including machine learning, data science, deep learning, computer vision, and natural language processing (NLP), both researchers and professionals, will find this book to be an excellent companion. This book can be useful as a quick reference for practitioners who already use a variety of mathematical topics but do not completely understand the underlying principles. TABLE OF CONTENTS 1. Overview of AI 2. Linear Algebra 3. Vector Calculus 4. Basic Statistics and Probability Theory 5. Statistics Inference and Applications 6. Neural Networks 7. Clustering 8. Dimensionality Reduction 9. Computer Vision 10. Sequence Learning Models 11. Natural Language Processing 12. Generative Models
This book provides an introduction to Newtonian and relativistic mechanics. Unlike other books on the topic, which generally take a 'top-down' approach, it follows a novel system to show how the concepts of the 'science of motion' evolved through a veritable jungle of intermediate ideas and concepts. Starting with Aristotelian philosophy, the text gradually unravels how the human mind slowly progressed towards the fundamental ideas of inertia physics. The concepts that now appear so obvious to even a high school student took great intellectuals more than a millennium to clarify. The book explores the evolution of these concepts through the history of science. After a comprehensive overview of the discovery of dynamics, it explores fundamental issues of the properties of space and time and their relation with the laws of motion. It also explores the concepts of spatio-temporal locality and fields, and offers a philosophical discussion of relative motion versus absolute motion, as well as the concept of an absolute space. Furthermore, it presents Galilean transformation and the principle of relativity, inadequacy of Galilean relativity and emergence of the spatial theory of relativity with an emphasis on physical understanding, as well as the debate over relative motion versus absolute motion and Mach's principle followed by the principle of equivalence. The natural follow-on to this section is the physical foundations of general theory of relativity. Lastly, the book ends with some new issues and possibilities regarding further modifications of the laws of motion leading to the solution of a number of fundamental issues closely connected with the characteristics of the cosmos. It is a valuable resource for undergraduate students of physics, engineering, mathematics, and related disciplines. It is also suitable for interdisciplinary coursework and introductory reading outside the classroom.
This interesting volume focuses on the second of the two broad categories into which problems of physical sciences fall-direct (or forward) and inverse (or backward) problems. It emphasizes one-dimensional problems because of their mathematical clarity. The unique feature of the monograph is its rigorous presentation of inverse problems (from quantum scattering to vibrational systems), transmission lines, and imaging sciences in a single volume. It includes exhaustive discussions on spectral function, inverse scattering integral equations of Gel'fand-Levitan and Marcenko, Povzner-Levitan and Levin transforms, Møller wave operators and Krein's functionals, S-matrix and scattering data, and inverse scattering transform for solving nonlinear evolution equations via inverse solving of a linear, isospectral Schrodinger equation and multisoliton solutions of the K-dV equation, which are of special interest to quantum physicists and mathematicians. The book also gives an exhaustive account of inverse problems in discrete systems, including inverting a Jacobi and a Toeplitz matrix, which can be applied to geophysics, electrical engineering, applied mechanics, and mathematics. A rigorous inverse problem for a continuous transmission line developed by Brown and Wilcox is included. The book concludes with inverse problems in integral geometry, specifically Radon's transform and its inversion, which is of particular interest to imaging scientists. This fascinating volume will interest anyone involved with quantum scattering, theoretical physics, linear and nonlinear optics, geosciences, mechanical, biomedical, and electrical engineering, and imaging research.
Distributed Systems Comprehensive textbook resource on distributed systems—integrates foundational topics with advanced topics of contemporary importance within the field Distributed Systems: Theory and Applications is organized around three layers of abstractions: networks, middleware tools, and application framework. It presents data consistency models suited for requirements of innovative distributed shared memory applications. The book also focuses on distributed processing of big data, representation of distributed knowledge and management of distributed intelligence via distributed agents. To aid in understanding how these concepts apply to real-world situations, the work presents a case study on building a P2P Integrated E-Learning system. Downloadable lecture slides are included to help professors and instructors convey key concepts to their students. Additional topics discussed in Distributed Systems: Theory and Applications include: Network issues and high-level communication tools Software tools for implementations of distributed middleware. Data sharing across distributed components through publish and subscribe-based message diffusion, gossip protocol, P2P architecture and distributed shared memory. Consensus, distributed coordination, and advanced middleware for building large distributed applications Distributed data and knowledge management Autonomy in distributed systems, multi-agent architecture Trust in distributed systems, distributed ledger, Blockchain and related technologies. Researchers, industry professionals, and students in the fields of science, technology, and medicine will be able to use Distributed Systems: Theory and Applications as a comprehensive textbook resource for understanding distributed systems, the specifics behind the modern elements which relate to them, and their practical applications.
This book presents comprehensive coverage of linear control systems along with an introduction to digital control systems. It is designed for undergraduate courses in control systems taught in departments of electrical engineering, electronics and instrumentation, electronics and communication, instrumentation and control, and computer science and engineering. The text discusses the important concepts of control systems, transfer functions and system components. It describes system stability, employing the Hurwitz–Routh stability criterion, root locus technique, Bode plot, and polar and Nyquist plots. In addition, this student-friendly book features in-depth coverage of controllers, compensators, state-space modelling and discrete time systems. KEY FEATURES •Includes a brief tutorial on MATLAB in an appendix to help students learn how to use it for the analysis and design of control systems. •Provides an abundance of worked-out examples and review questions culled from university examination papers. •Gives answers to selected chapter-end questions at the end of the book.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.