This overview of the development of continuum mechanics throughout the twentieth century is unique and ambitious. Utilizing a historical perspective, it combines an exposition on the technical progress made in the field and a marked interest in the role played by remarkable individuals and scientific schools and institutions on a rapidly evolving social background. It underlines the newly raised technical questions and their answers, and the ongoing reflections on the bases of continuum mechanics associated, or in competition, with other branches of the physical sciences, including thermodynamics. The emphasis is placed on the development of a more realistic modeling of deformable solids and the exploitation of new mathematical tools. The book presents a balanced appraisal of advances made in various parts of the world. The author contributes his technical expertise, personal recollections, and international experience to this general overview, which is very informative albeit concise.
This is the second volume of a two-volume set presenting a unified approach to the electrodynamics of continua, based on the principles of contemporary continuum of physics. The first volume was devoted mainly to the development of the theory and applications to deformable solid media. This volume extends the developments of the first volume to richer and newer grounds. It contains discussions on fluid media, magnetohydrodynamics, eletrohydrodynamics and media with more complicated structures. With the discussion, in the last two chapters, of memory-dependent materials and non-local E-M theory, the authors account for the nonlocal effects arising from motions and fields of material points at past times and at spatially distant points. This discussion is included here to stimulate further research in these important fields, which are presently in development stages. The second volume is self-contained and can be studied without the help of volume I. A section summarizing the constitutive equations and the underlying physical ideas, which were presented in more detail in the first volume, is included. This volume may be used as a basis for several graduate courses in engineering schools, applied mathematics and physics departments. It also contains fresh ideas and will stimulate further research in the directions the authors outline.
In this invaluable book, macroscopic irreversible thermodynamics is presented in its realm and its splendor by appealing to the notion of internal variables of state. This applies to both fluids and solids with or without microstructures of mechanical or electromagnetic origin. This unmatched richness of essentially nonlinear behaviors is the result of the use of modern mathematical techniques such as convex analysis in a clear-cut framework which allows one to put under the umbrella of “irreversible thermodynamics” behaviors which until now have been commonly considered either not easily covered, or even impossible to incorporate into such a framework.The book is intended for all students and researchers whose main concern is the rational modeling of complex and/or new materials with physical and engineering applications, such as those accounting for coupled-field, hysteresis, fracture, nonlinear-diffusion, and phase-transformation phenomena.
Exploring recent developments in continuum mechanics, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics presents the general framework for configurational forces. It also covers a range of applications in engineering and condensed matter physics. The author presents the fundamentals of accepted standard continuum mechanics, before introducing Eshelby material stress, field theory, variational formulations, Noether’s theorem, and the resulting conservation laws. In the chapter on complex continua, he compares the classical perspective of B.D. Coleman and W. Noll with the viewpoint linked to abstract field theory. He then describes the important notion of local structural rearrangement and its relationship to Eshelby stress. After looking at the relevance of Eshelby stress in the thermodynamic description of singular interfaces, the text focuses on fracture problems, microstructured media, systems with mass exchanges, and electromagnetic deformable media. The concluding chapters discuss the exploitation of the canonical conservation law of momentum in nonlinear wave propagation, the application of canonical-momentum conservation law and material force in numerical schemes, and similarities of fluid mechanics and aerodynamics. Written by a long-time researcher in mechanical engineering, this book provides a detailed treatment of the theory of configurational forces—one of the latest and most fruitful advances in macroscopic field theories. Through many applications, it shows the depth and efficiency of this theory.
The electrodynamics of continua is a branch ofthe physical sciences concerned with the interaction of electromagnetic fields with deformable bodies. De formable bodies are considered to be continua endowed with continuous distributions of mass and charge. The theory of electromagnetic continua is concerned with the determination of deformations, motions, stress, and elec tromagnetic fields developed in bodies upon the applications of external loads. External loads may be of mechanical origin (e.g., forces, couples, constraints placed on the surface of the body, and initial and boundary conditions arising from thermal and other changes) and/or electromagnetic origin (e.g., electric, magnetic, and current fields). Because bodies of different constitutions respond to external stimuli in a different way, it is imperative to characterize properly the response functions relevant to a given class of continua. This is done by means of the constitutive theory. For example, an elastic dielectric responds to electromagnetic fields in a totally different way than a magnetic fluid. The present book is intended to present a unified approach to the subject matter, based on the principles of contemporary continuum physics.
This unique volume presents an original approach to physical acoustics with additional emphasis on the most useful surface acoustic waves on solids. The study is based on foundational work of Léon Brillouin, and application of the celebrated invariance theorem of Emmy Noether to an element of volume that is representative of the wave motion.This approach provides an easy interpretation of typical wave motions of physical acoustics in bulk, at surfaces, and across interfaces, in the form of the motion of associated quasi-particles. This type of motion, Newtonian or not, depends on the wave motion considered, and on the original modeling of the continuum that supports it. After a thoughtful review of Brillouin's fundamental ideas related to radiative stresses, wave momentum and action, and the necessary reminder on modern nonlinear continuum thermomechanics, invariance theory and techniques of asymptotics, a variety of situations and models illustrates the power and richness of the approach and its strong potential in applications. Elasticity, piezoelectricity and new models of continua with nonlinearity, viscosity and some generalized features (microstructure, weak or strong nonlocality) or unusual situations (bounding surface with energy, elastic thin film glued on a surface waveguide), are considered, exhibiting thus the versatility of the approach.This original book offers an innovative vision and treatment of the problems of wave propagation in deformable solids. It opens up new horizons in the theoretical and applied facets of physical acoustics.
This book shows the advanced methods of numerical simulation of waves and fronts propagation in inhomogeneous solids and introduces related important ideas associated with the application of numerical methods for these problems. Great care has been taken throughout the book to seek a balance between the thermomechanical analysis and numerical techniques. It is suitable for advanced undergraduate and graduate courses in continuum mechanics and engineering. Necessary prerequisites for this text are basic continuum mechanics and thermodynamics. Some elementary knowledge of numerical methods for partial differential equations is also preferable.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.