Contents: Recursive Enumerability and the Jump Operator; On the Degrees Less Than 0'; A Simple Set Which Is Not Effectively Simple; The Recursively Enumerable Degrees Are Dense; Metarecursive Sets (with G Kreisel); Post's Problem, Admissible Ordinals and Regularity; On a Theorem of Lachlan and Marlin; A Minimal Hyperdegree (with R O Gandy); Measure-Theoretic Uniformity in Recursion Theory and Set Theory; Forcing with Perfect Closed Sets; Recursion in Objects of Finite Type; The a-Finite Injury Method (with S G Simpson); Remarks Against Foundational Activity; Countable Admissible Ordinals and Hyperdegrees; The 1-Section of a Type n Object; The k-Section of a Type n Object; Post's Problem, Absoluteness and Recursion in Finite Types; Effective Bounds on Morley Rank; On the Number of Countable Models; Post's Problem in E-Recursion; The Limits of E-Recursive Enumerability; Effective Versus Proper Forcing.
This invaluable book is a collection of 31 important ? both in ideas and results ? papers published by mathematical logicians in the 20th Century. The papers have been selected by Professor Gerald E Sacks. Some of the authors are Gdel, Kleene, Tarski, A Robinson, Kreisel, Cohen, Morley, Shelah, Hrushovski and Woodin.
This invaluable book is a collection of 31 important ? both in ideas and results ? papers published by mathematical logicians in the 20th Century. The papers have been selected by Professor Gerald E Sacks. Some of the authors are Gdel, Kleene, Tarski, A Robinson, Kreisel, Cohen, Morley, Shelah, Hrushovski and Woodin.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.