Discover the many facets of non-equilibrium thermodynamics. The first part of this book describes the current thermodynamic formalism recognized as the classical theory. The second part focuses on different approaches. Throughout the presentation, the emphasis is on problem-solving applications. To help build your understanding, some problems have been analyzed using several formalisms to underscore their differences and their similarities.
Classical irreversible thermodynamics, as developed by Onsager, Prigogine and many other authors, is based on the local-equilibrium hypothesis. Out of equilibrium, any system is assumed to depend locally on the same set of variables as when it is in eqUilibrium. This leads to a formal thermody namic structure identical to that of eqUilibrium: intensive parameters such as temperature, pressure and chemical potentials are well-defined quantities keeping their usual meaning, thermodynamic potentials are derived as Leg endre transformations and all equilibrium thermodynamic relations retain their validity. The theory based on this hypothesis has turned out to be very useful and has achieved a number of successes in many practical situations. of interest in going However, the recent decade has witnessed a surge beyond the classical formulation. There are several reasons for this. One of them is the development of experimental methods able to deal with the response of systems to high-frequency and short-wavelength perturbations, such as ultrasound propagation and light and neutron scattering. The ob served results have led to generalizations of the classical hydrodynamical theories, by including memory functions or generalized transport coefficients depending on the frequency and the wavevector. This field has generated impressive progress in non-equilibrium statistical mechanics, but for the moment it has not brought about a parallel development in non-equilibrium thermodynamics. An extension of thermodynamics compatible with gener alized hydrodynamics therefore appears to be a natural subject of research.
Discover the many facets of non-equilibrium thermodynamics. The first part of this book describes the current thermodynamic formalism recognized as the classical theory. The second part focuses on different approaches. Throughout the presentation, the emphasis is on problem-solving applications. To help build your understanding, some problems have been analyzed using several formalisms to underscore their differences and their similarities.
Modern technology strives towards higher speed, higher power, and higher miniaturiza tion. In these conditions, the classical transport equations must be updated in order to incorporate memory, non-local, and non-linear effects. These effects have been studied by starting from microscopic models which are specific to particular systems and whose solution requires mathematical approximations and boundary conditions. The aim of extended irreversible thermodynamics is to complement such microscopic analyses with a macroscopic framework which could play, with respect to the generalized trans port equations incorporating the aforementioned effects, a role similar to the one played by classical thermodynamics with respect to the classical transport equations. Such a macroscopic framework is particularly useful for comparing the results obtained from various microscopic models, for placing some restrictions on the range of validity of different approximations, and for settling a discussion on some basic concepts that arise unavoidably in a formalism that crosses the frontiers of the local-equilibrium theory. Extended irreversible thermodynamics is not at all in conflict with the classical theory of non-equilibrium thermodynamics and rational thermodynamics but must be viewed as a relevant extension of the scope of these descriptions. For the student or the researcher, it may be stimulating to go beyond the classical theories and to enter a of new ideas, new applications, and new problems.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.