Modeling Evolution of Heterogeneous Populations: Theory and Applications describes, develops and provides applications of a method that allows incorporating population heterogeneity into systems of ordinary and discrete differential equations without significantly increasing system dimensionality. The method additionally allows making use of results of bifurcation analysis performed on simplified homogeneous systems, thereby building on the existing body of tools and knowledge and expanding applicability and predictive power of many mathematical models. - Introduces Hidden Keystone Variable (HKV) method, which allows modeling evolution of heterogenous populations, while reducing multi-dimensional selection systems to low-dimensional systems of differential equations - Demonstrates that replicator dynamics is governed by the principle of maximal relative entropy that can be derived from the dynamics of selection systems instead of being postulated - Discusses mechanisms behind models of both Darwinian and non-Darwinian selection - Provides examples of applications to various fields, including cancer growth, global demography, population extinction, tragedy of the commons and resource sustainability, among others - Helps inform differences in underlying mechanisms of population growth from experimental observations, taking one from experiment to theory and back
A review of modern approaches existing nowadays in ecological modelling of forest ecosystems in boreal and temperate forests. The book contains data on contemporary approaches in intensively developed simulation modelling of forest stands, soils and whole ecosystems as well; an analysis of existing spatial forest models and their significance and development; and a comprehensive discussion of theoretical (analytical) models of forest communities. The idea of a system of forest models for more effective solving of different theoretical and practical problems is also discussed. This work is particularly useful in its critical reviewing of modern achievements in forest ecosystem modelling and its discussion of more promising trends of forest modelling with an increase of their practical significance in the near future.
Modeling Evolution of Heterogeneous Populations: Theory and Applications describes, develops and provides applications of a method that allows incorporating population heterogeneity into systems of ordinary and discrete differential equations without significantly increasing system dimensionality. The method additionally allows making use of results of bifurcation analysis performed on simplified homogeneous systems, thereby building on the existing body of tools and knowledge and expanding applicability and predictive power of many mathematical models. - Introduces Hidden Keystone Variable (HKV) method, which allows modeling evolution of heterogenous populations, while reducing multi-dimensional selection systems to low-dimensional systems of differential equations - Demonstrates that replicator dynamics is governed by the principle of maximal relative entropy that can be derived from the dynamics of selection systems instead of being postulated - Discusses mechanisms behind models of both Darwinian and non-Darwinian selection - Provides examples of applications to various fields, including cancer growth, global demography, population extinction, tragedy of the commons and resource sustainability, among others - Helps inform differences in underlying mechanisms of population growth from experimental observations, taking one from experiment to theory and back
Power Laws, Scale-free Networks and Genome Biology deals with crucial aspects of the theoretical foundations of systems biology, namely power law distributions and scale-free networks which have emerged as the hallmarks of biological organization in the post-genomic era. The chapters in the book not only describe the interesting mathematical properties of biological networks but moves beyond phenomenology, toward models of evolution capable of explaining the emergence of these features. The collection of chapters, contributed by both physicists and biologists, strives to address the problems in this field in a rigorous but not excessively mathematical manner and to represent different viewpoints, which is crucial in this emerging discipline. Each chapter includes, in addition to technical descriptions of properties of biological networks and evolutionary models, a more general and accessible introduction to the respective problems. Most chapters emphasize the potential of theoretical systems biology for discovery of new biological phenomena.
A review of modern approaches existing nowadays in ecological modelling of forest ecosystems in boreal and temperate forests. The book contains data on contemporary approaches in intensively developed simulation modelling of forest stands, soils and whole ecosystems as well; an analysis of existing spatial forest models and their significance and development; and a comprehensive discussion of theoretical (analytical) models of forest communities. The idea of a system of forest models for more effective solving of different theoretical and practical problems is also discussed. This work is particularly useful in its critical reviewing of modern achievements in forest ecosystem modelling and its discussion of more promising trends of forest modelling with an increase of their practical significance in the near future.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.