Introduction The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra, $r\ge 3$ (excluding type $\mathrm{D}_3)$ Models for $\mathrm{BC}_r$-graded Lie algebras, $r\ge 3$ (excluding type $\mathrm{D}_3)$ The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Central extensions, derivations and invariant forms Models of $\mathrm{BC}_r$-graded Lie algebras with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Appendix: Peirce decompositions in structurable algebras References.
In this work we consider the problem of determining information about representations as the rank grows large, in fact, tends to infinity. Here we show that the set of dominant weights stabilizes as the rank goes to infinity and the multiplicities become polynomials in the rank. In addition, we give effective, easily computable algorithms for determining the set of dominant weights and illustrate how to calculate their multiplicity polynomials.
Discusses the problem of determining the finite-dimensional simple Lie algebras over an algebraically closed field of characteristic $p>7$. This book includes topics such as Lie algebras of prime characteristic, algebraic groups, combinatorics and representation theory, and Kac-Moody and Virasoro algebras.
In this work we consider the problem of determining information about representations as the rank grows large, in fact, tends to infinity. Here we show that the set of dominant weights stabilizes as the rank goes to infinity and the multiplicities become polynomials in the rank. In addition, we give effective, easily computable algorithms for determining the set of dominant weights and illustrate how to calculate their multiplicity polynomials.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.