the definitive guide to the theory and practice of water treatment engineering THIS NEWLY REVISED EDITION of the classic reference provides complete, up-to-date coverage of both theory and practice of water treatment system design. The Third Edition brings the field up to date, addressing new regulatory requirements, ongoing environmental concerns, and the emergence of pharmacological agents and other new chemical constituents in water. Written by some of the foremost experts in the field of public water supply, Water Treatment, Third Edition maintains the book's broad scope and reach, while reorganizing the material for even greater clarity and readability. Topics span from the fundamentals of water chemistry and microbiology to the latest methods for detecting constituents in water, leading-edge technologies for implementing water treatment processes, and the increasingly important topic of managing residuals from water treatment plants. Along with hundreds of illustrations, photographs, and extensive tables listing chemical properties and design data, this volume: Introduces a number of new topics such as advanced oxidation and enhanced coagulation Discusses treatment strategies for removing pharmaceuticals and personal care products Examines advanced treatment technologies such as membrane filtration, reverse osmosis, and ozone addition Details reverse osmosis applications for brackish groundwater, wastewater, and other water sources Provides new case studies demonstrating the synthesis of full-scale treatment trains A must-have resource for engineers designing or operating water treatment plants, Water Treatment, Third Edition is also useful for students of civil, environmental, and water resources engineering.
Principles of Water Treatment has been developed from the best selling reference work Water Treatment, 3rd edition by the same author team. It maintains the same quality writing, illustrations, and worked examples as the larger book, but in a smaller format which focuses on the treatment processes and not on the design of the facilities.
Our book addresses the needs of practitioners, engineers, scientists, regulators, resource managers, planners, and others with a need to know about septic systems. It arose after discussions about the need for a text that integrated current understanding of the hydrologic, physical, chemical, and biological processes involved in the treatment of wastewater using soil. In our experience, people working with septic systems – ourselves included – have a fragmented understanding of what these systems are, how they function, how wastewater moves through soil, how and which pollutants are removed, and how these systems impact the environment and public health. The relevant information is scattered across disciplines, information sources and audiences. This book is an attempt to collect and integrate this information in one place, and provide a scientific framework for understanding soil-based wastewater treatment.
Reviews of Environmental Contamination and Toxicology provides detailed review articles concerned with aspects of chemical contaminants, including pesticides, in the total environment with toxicological considerations and consequences.
This text covers the design of food processing equipment based on key unit operations, such as heating, cooling, and drying. In addition, mechanical processing operations such as separations, transport, storage, and packaging of food materials, as well as an introduction to food processes and food processing plants are discussed. Handbook of Food Processing Equipment is an essential reference for food engineers and food technologists working in the food process industries, as well as for designers of process plants. The book also serves as a basic reference for food process engineering students.The chapters cover engineering and economic issues for all important steps in food processing. This research is based on the physical properties of food, the analytical expressions of transport phenomena, and the description of typical equipment used in food processing. Illustrations that explain the structure and operation of industrial food processing equipment are presented. style="font-size: 13.3333330154419px;">The materials of construction and fabrication of food processing equipment are covered here, as well as the selection of the appropriate equipment for various food processing operations. Mechanical processing equipment such as size reduction, size enlargement, homogenization, and mixing are discussed. Mechanical separations equipment such as filters, centrifuges, presses, and solids/air systems, plus equipment for industrial food processing such as heat transfer, evaporation, dehydration, refrigeration, freezing, thermal processing, and dehydration, are presented. Equipment for novel food processes such as high pressure processing, are discussed. The appendices include conversion of units, selected thermophysical properties, plant utilities, and an extensive list of manufacturers and suppliers of food equipment.
The Utilization of Slag in Civil Infrastructure Construction strives to integrate the theory, research, and practice of slag utilization, including the production and processing of slags. The topics covered include: production and smelting processes for metals; chemical and physical properties of slags; pretreatment and post-treatment technology to enhance slag properties; potential environmental impact; mechanisms of potential expansion; special testing methods and characteristics; slag processing for aggregate and cementitious applications; suitability of slags for use in specific applications; overall properties of materials containing slags; and commercialization and economics. The focus of the book is on slag utilization technology, with a review of the basic properties and an exploration of how its use in the end product will be technically sound, environment-friendly, and economic. - Covers the production, processing, and utilization of a broad range of ferrous, non-ferrous, and non-metallurgical slags - Provides information on applicable methods for a particular slag and its utilization to reduce potential environmental impacts and promote natural resource sustainability - Presents the overall technology of transferring a slag from the waste stream into a useful materials resource - Provides a detailed review of the appropriate utilization of each slag from processing right through to aggregate and cementitious use requirements
Composting and Recycling Municipal Solid Waste is a comprehensive guide that identifies, describes, explains, and evaluates the options available when composting and recycling municipal solid waste (MSW). The book begins with an introductory chapter on the nature of MSW and the importance of solid waste management programs and resource recovery. Chapter 2 discusses MSW storage and collection, with emphasis on recyclables. Chapter 3 examines issues involved in determining the quantity, composition, and key physical characteristics of the MSW to be managed and processed. The book's other chapters cover topics such as the steps required for processing MSW for material recovery, the use of uncomposted organic matter as a soil amendment, composting and use of compost product, the marketing of recyclables, biogasification, and integrated waste management. Composting and Recycling Municipal Solid Waste provides essential information needed by solid waste professionals, consultants, regulators, and planners to arrive at rational decisions regarding available economic and technological resources for MSW composting and recycling.
Constructed wetlands are proving to be the best natural treatment system for landfill leachates. Most of the contaminants in landfill leachates are degraded in treatment wetlands. Potential for long-term sustainability and significant cost savings are attractive features of this eco-technology. Documentation of the experience in this use of constructed wetlands has been limited. Constructed Wetlands for the Treatment of Landfill Leachates is the first compilation of the results of research from North America and Europe. Originally presented at an international symposium, this collection of papers offers the most recent research findings from the leading researchers in this new and innovative natural treatment system. Specific issues addressed in the text include: leachate characteristics, and the potential for treatability by constructed wetlands wetland treatment, processes and transformation use of constructed wetlands in cold climatic conditions assessment of the tolerance of wetland plants to the toxicity of leachates role of plants in the treatments of leachates integrated wetland systems performance of different wetland treatment systems cost comparisons of wetland technology vs. traditional treatment technologies The potential for environmental contamination due to leachates from landfills is increasing, and there is an urgent need to find ways and means to treat leachates in a sustainable way Constructed Wetlands for the Treatment of Landfill Leachates will provide an invaluable source of information on the subject for scientists, engineers, practitioners, policy makers, and regulatory officials.
In a world where waste incinerators are not an option and landfills are at over capacity, cities are hard pressed to find a solution to the problem of what to do with their solid waste. Handbook of Solid Waste Management, 2/e offers a solution. This handbook offers an integrated approach to the planning, design, and management of economical and environmentally responsible solid waste disposal system. Let twenty industry and government experts provide you with the tools to design a solid waste management system capable of disposing of waste in a cost-efficient and environmentally responsible manner. Focusing on the six primary functions of an integrated system--source reduction, toxicity reduction, recycling and reuse, composting, waste- to-energy combustion, and landfilling--they explore each technology and examine its problems, costs, and legal and social ramifications.
An Integrated Approach to Managing the World's Water Resources Water Reuse: Issues, Technologies, and Applications equips water/wastewater students, engineers, scientists, and professionals with a definitive account of the latest water reclamation, recycling, and reuse theory and practice. This landmark textbook presents an integrated approach to all aspects of water reuse _ from public health protection to water quality criteria and regulations to advanced technology to implementation issues. Filled with over 500 detailed illustrations and photographs, Water Reuse: Issues, Technology, and Applications features: In-depth coverage of cutting-edge water reclamation and reuse applications Current issues and developments in public health and environmental protection criteria, regulations, and risk management Review of current advanced treatment technologies, new developments, and practices Special emphasis on process reliability and multiple barrier concepts approach Consideration of satellite and decentralized water reuse facilities Consideration of planning and public participation of water reuse Inside This Landmark Water/Wastewater Management Tool • Water Reuse: An Introduction • Health and Environmental Concerns in Water Reuse • Technologies and Systems for Water Reclamation and Reuse • Water Reuse Applications • Implementing Water Reuse
In a world where waste incinerators are not an option and landfills are at over capacity, cities are hard pressed to find a solution to the problem of what to do with their solid waste. Handbook of Solid Waste Management, 2/e offers a solution. This handbook offers an integrated approach to the planning, design, and management of economical and environmentally responsible solid waste disposal system. Let twenty industry and government experts provide you with the tools to design a solid waste management system capable of disposing of waste in a cost-efficient and environmentally responsible manner. Focusing on the six primary functions of an integrated system--source reduction, toxicity reduction, recycling and reuse, composting, waste- to-energy combustion, and landfilling--they explore each technology and examine its problems, costs, and legal and social ramifications.
An Integrated Approach to Managing the World's Water Resources Water Reuse: Issues, Technologies, and Applications equips water/wastewater students, engineers, scientists, and professionals with a definitive account of the latest water reclamation, recycling, and reuse theory and practice. This landmark textbook presents an integrated approach to all aspects of water reuse _ from public health protection to water quality criteria and regulations to advanced technology to implementation issues. Filled with over 500 detailed illustrations and photographs, Water Reuse: Issues, Technology, and Applications features: In-depth coverage of cutting-edge water reclamation and reuse applications Current issues and developments in public health and environmental protection criteria, regulations, and risk management Review of current advanced treatment technologies, new developments, and practices Special emphasis on process reliability and multiple barrier concepts approach Consideration of satellite and decentralized water reuse facilities Consideration of planning and public participation of water reuse Inside This Landmark Water/Wastewater Management Tool • Water Reuse: An Introduction • Health and Environmental Concerns in Water Reuse • Technologies and Systems for Water Reclamation and Reuse • Water Reuse Applications • Implementing Water Reuse
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.