The theory and applications of infinite dimensional dynamical systems have attracted the attention of scientists for quite some time. This book serves as an entrée for scholars beginning their journey into the world of dynamical systems, especially infinite dimensional spaces. The main approach involves the theory of evolutionary equations.
This book is a unique introduction to the theory of linear operators on Hilbert space. The authors' goal is to present the basic facts of functional analysis in a form suitable for engineers, scientists, and applied mathematicians. Although the Definition-Theorem-Proof format of mathematics is used, careful attention is given to motivation of the material covered and many illustrative examples are presented. First published in 1971, Linear Operator in Engineering and Sciences has since proved to be a popular and very useful textbook.
The purpose of this paper is to show how Volterra integral equations may be studied within the framework of the theory of topological dynamics. Part I contains the basic theory, as local dynamical systems are discussed together with some of their elementary properties. The notation of compatible pairs of function spaces is introduced. Part II contains examples of compatible pairs, as these spaces are studied in some detail. Part III contains some applications of the first two parts.
In this paper we wish to study the lifting properties of skew-product flows. These properties are particularly important in the study of non-autonomous ordinary and functional differential equations. For example, the question of the existence of a periodic solution for a differential equation with periodic coefficients is the same as asking whether the periodic structure of the coefficient space can be lifted to a periodic structure in the solution space.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.