Life at the Center of the Energy Crisis: A Technologist's Search for a Black Swan describes the story of the author's work and struggles in the field of energy research. The author's experience in the field spans from work with Admiral Rickover and the Nuclear Navy to research with NASA designing propulsion for spacecraft to travel to Mars. The book provides insights into the differences between nuclear research done during the Cold War by the two superpowers, and offers a commentary on the flaws in each system with hope for change in the future. The book also provides a look into the development of the nuclear engineering program at the University of Illinois from the author's years as a professor and an administrator.
This book covers the history of lasers with nuclear pumping (Nuclear Pumped Lasers, NPLs). This book showcases the most important results and stages of NPL development in The Russian Federal Nuclear Center (VNIIEF) as well as other Russian and international laboratories, including laboratories in the United States. The basic science and technology behind NPLs along with potential applications are covered throughout the book. As the first comprehensive discussion of NPLs, students, researchers, and application engineers interested in high energy lasers will find this book to be an extremely valuable source of information about these unique lasers.
The exciton mechanism of high-Tc superconductivity in copper oxides was initially proposed by Prof. J. Bardeen. His insight is largely shared by another luminary in superconductivity, Prof. V. L. Ginzburg. The main author of the book, Dr. Nie Luo, was motivated by their insights to give a geometrical explanation to the excitonic Coulomb interaction and has developed a unique formalism to understand and predict physical properties of high-Tc superconductors. This work is supported by increasingly strong evidence for electron–hole interactions in p-type cuprates. The presence of electrons in hole-doped cuprates is revealed by the works of the authors and many others, including the late Prof. L. P. Gor’kov. The book also tries to understand the interlayer Coulomb (ILC) pairing model by the excitonic Coulomb interaction. Developed by Prof. A. J. Leggett, ILC theory shares many views with Ginzburg’s approach. The other author of the book, Prof. George H. Miley, shares with us his personal experience with Prof. Bardeen on the exciton’s role in physics problems including high-Tc superconductivity. The results and predictions of this excitonic Coulomb mechanism have been verified by an increasing number of experiments. This book summarizes the current status and fathoms future directions.
This book provides readers with an introductory understanding of Inertial Electrostatic Confinement (IEC), a type of fusion meant to retain plasma using an electrostatic field. IEC provides a unique approach for plasma confinement, as it offers a number of spin-off applications, such as a small neutron source for Neutron Activity Analysis (NAA), that all work towards creating fusion power. The IEC has been identified in recent times as an ideal fusion power unit because of its ability to burn aneutronic fuels like p-B11 as a result of its non-Maxwellian plasma dominated by beam-like ions. This type of fusion also takes place in a simple mechanical structure small in size, which also contributes to its viability as a source of power. This book posits that the ability to study the physics of IEC in very small volume plasmas makes it possible to rapidly investigate a design to create a power-producing device on a much larger scale. Along with this hypothesis the book also includes a conceptual experiment proposed for demonstrating breakeven conditions for using p-B11 in a hydrogen plasma simulation. This book also: Offers an in-depth look, from introductory basics to experimental simulation, of Inertial Electrostatic Confinement, an emerging method for generating fusion power Discusses how the Inertial Electrostatic Confinement method can be applied to other applications besides fusion through theoretical experiments in the text Details the study of the physics of Inertial Electrostatic Confinement in small-volume plasmas and suggests that their rapid reproduction could lead to the creation of a large-scale power-producing device Perfect for researchers and students working with nuclear fusion, Inertial Electrostatic Confinement (IEC) Fusion: Fundamentals and Applications also offers the current experimental status of IEC research, details supporting theories in the field and introduces other potential applications that stem from IEC.
This textbook accommodates the two divergent developmental paths which have become solidly established in the field of fusion energy: the process of sequential tokamak development toward a prototype and the need for a more fundamental and integrative research approach before costly design choices are made.Emphasis is placed on the development of physically coherent and mathematically clear characterizations of the scientific and technological foundations of fusion energy which are specifically suitable for a first course on the subject. Of interest, therefore, are selected aspects of nuclear physics, electromagnetics, plasma physics, reaction dynamics, materials science, and engineering systems, all brought together to form an integrated perspective on nuclear fusion and its practical utilization.The book identifies several distinct themes. The first is concerned with preliminary and introductory topics which relate to the basic and relevant physical processes associated with nuclear fusion. Then, the authors undertake an analysis of magnetically confined, inertially confined, and low-temperature fusion energy concepts. Subsequently, they introduce the important blanket domains surrounding the fusion core and discuss synergetic fusion-fission systems. Finally, they consider selected conceptual and technological subjects germane to the continuing development of fusion energy systems.
- Broad understandable summaries of leading experts - Unique review of inexhaustive, clean, safe and low-cost energy production for the future - Discussion of very short laser pulses, 1000 times more powerful than all the power stations on earth
Papers from the April 1995 conference (formerly called a "workshop") are contained in two volumes. The first volume (623-9) comprises contributions arranged in sections on ICF programs and energy drivers; critical elements for ignition--target experiment, physics, and design; laser-matter interaction physics; and high intensities, short pulse interactions. The second volume (624-7) begins with papers on optical technologies and various kinds of lasers--free electron, LD and LD pumped, gas, nuclear pumped, and short pulse. Following these are sections on particle beams--light and heavy ion beam fusions; and applications of laser and plasma. Edward Teller Award lectures complete the proceedings. Not indexed by subject (contains only an author "index"). Annotation copyrighted by Book News, Inc., Portland, OR
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.