Fourier Expansions: A Collection of Formulas provides a collection of Fourier series. Its limited scope made a number of compromises necessary. The question regarding the choice and organization of the material to be included posed certain problems. In order to preserve some consistency it seemed best to stay within the framework of what one could call the ""classical"" Fourier series, i.e., those of the trigonometric and their simplest generalization the Fourier-Bessel series. The book is organized into five sections: Section I presents Fourier series with elementary coefficients representing elementary functions. Section II presents Fourier series with elementary coefficients representing higher functions. Section III presents Fourier series with higher function coefficients representing elementary functions. Section IV presents Fourier series with higher function coefficients representing higher functions. Section V presents exponential Fourier and Fourier-Bessel series. This arrangement should be helpful in equally balancing the task of either establishing the sum function of a given Fourier series or finding the Fourier expansion of a given function. It is hoped that this book will meet the requirements so often needed in applied mathematics, physics, and engineering.
This book presents a collection of integrals of the sine-, cosine- and exponential Fourier transforms of functions f(x). It is the second, considerably enlarged version of the author's previous publication "Tabellen zur Fourier Transformation" (Springer-Verlag 1957). In addition to numerous new results in Parts I-III, a new Part IV has been introduced dealing with problems in mathematical statistics. The aim of the book is to serve as a reference work for all those whose main interest is in the application of Fourier transform methods. These methods have found a wide variety of applications in the natural and technical sciences.
This is a new and enlarged English edition of the book which, under the title "Formeln und Satze fur die Speziellen Funktionen der mathe matischen Physik" appeared in German in 1946. Much of the material (part of it unpublished) did not appear in the earlier editions. We hope that these additions will be useful and yet not too numerous for the purpose of locating .with ease any particular result. Compared to the first two (German) editions a change has taken place as far as the list of references is concerned. They are generally restricted to books and monographs and accomodated at the end of each individual chapter. Occasional references to papers follow those results to which they apply. The authors felt a certain justification for this change. At the time of the appearance of the previous edition nearly twenty years ago much of the material was scattered over a number of single contributions. Since then most of it has been included in books and monographs with quite exhaustive bibliographies. For information about numerical tables the reader is referred to "Mathematics of Computation", a periodical publis hed by the American Mathematical Society; "Handbook of Mathe matical Functions" with formulas, graphs and mathematical tables National Bureau of Standards Applied Mathematics Series, 55, 1964, 1046 pp., Government Printing Office, Washington, D.C., and FLETCHER, MILLER, ROSENHEAD, Index of Mathematical Tables, Addison-Wesley, Reading, Mass.) .. There is a list of symbols and abbreviations at the end of the book.
Fourier Transforms of Distributions and Their Inverses: A Collection of Tables is a collection of tables on the integrals of Fourier transforms of distributions and their inverses involving the class of functions which are nonnegative and integrable over the interval. The emphasis is on the probability densities, and a number of examples are provided. This book is organized into two parts and begins with an introduction to those properties of characteristic functions which are important in probability theory, followed by a description of the tables and their use. The first three tables contain Fourier transforms of absolutely continuous distribution functions, namely, even functions (including Legendre functions); functions vanishing identically for negative values of the argument (including arbitrary powers); and functions that do not belong to either of the above classes. The transform pairs are numbered consecutively and arranged systematically according to the analytical character of the frequency function. The next two tables give the inverse transforms of the functions listed in the first and third tables, respectively. This monograph will appeal to students and specialists in the fields of probability and mathematical statistics.
This book is concerned with discontinuous groups of motions of the unique connected and simply connected Riemannian 3-manifold of constant curva ture -1, which is traditionally called hyperbolic 3-space. This space is the 3-dimensional instance of an analogous Riemannian manifold which exists uniquely in every dimension n :::: 2. The hyperbolic spaces appeared first in the work of Lobachevski in the first half of the 19th century. Very early in the last century the group of isometries of these spaces was studied by Steiner, when he looked at the group generated by the inversions in spheres. The ge ometries underlying the hyperbolic spaces were of fundamental importance since Lobachevski, Bolyai and Gauß had observed that they do not satisfy the axiom of parallels. Already in the classical works several concrete coordinate models of hy perbolic 3-space have appeared. They make explicit computations possible and also give identifications of the full group of motions or isometries with well-known matrix groups. One such model, due to H. Poincare, is the upper 3 half-space IH in JR . The group of isometries is then identified with an exten sion of index 2 of the group PSL(2,
This book provides a detailed treatment of the various facets of modern Sturm?Liouville theory, including such topics as Weyl?Titchmarsh theory, classical, renormalized, and perturbative oscillation theory, boundary data maps, traces and determinants for Sturm?Liouville operators, strongly singular Sturm?Liouville differential operators, generalized boundary values, and Sturm?Liouville operators with distributional coefficients. To illustrate the theory, the book develops an array of examples from Floquet theory to short-range scattering theory, higher-order KdV trace relations, elliptic and algebro-geometric finite gap potentials, reflectionless potentials and the Sodin?Yuditskii class, as well as a detailed collection of singular examples, such as the Bessel, generalized Bessel, and Jacobi operators. A set of appendices contains background on the basics of linear operators and spectral theory in Hilbert spaces, Schatten?von Neumann classes of compact operators, self-adjoint extensions of symmetric operators, including the Friedrichs and Krein?von Neumann extensions, boundary triplets for ODEs, Krein-type resolvent formulas, sesquilinear forms, Nevanlinna?Herglotz functions, and Bessel functions.
This very comprehensive and practical textbook presents a clear, systematic and comprehensive introduction to the relevant mathematics and physics of linear and nonlinear oscillations and waves. It explains even the most complicated cases clearly, with numerous illustrations for further clarification.
New Interplays : a Volume in Honor of Sergio Albeverio : Proceedings of the Conference on Infinite Dimensional (Stochastic) Analysis and Quantum Physics, Max Planck Institute for Mathematics in the Sciences, Leipzig, January 18-22, 1999
New Interplays : a Volume in Honor of Sergio Albeverio : Proceedings of the Conference on Infinite Dimensional (Stochastic) Analysis and Quantum Physics, Max Planck Institute for Mathematics in the Sciences, Leipzig, January 18-22, 1999
This volume and Stochastic Processes, Physics and Geometry: New Interplays I present state-of-the-art research currently unfolding at the interface between mathematics and physics. Included are select articles from the international conference held in Leipzig (Germany) in honor of Sergio Albeverio's sixtieth birthday. The theme of the conference, "Infinite Dimensional (Stochastic) Analysis and Quantum Physics", was chosen to reflect Albeverio's wide-ranging scientific interests. The articles in these books reflect that broad range of interests and provide a detailed overview highlighting the deep interplay among stochastic processes, mathematical physics, and geometry. The contributions are written by internationally recognized experts in the fields of stochastic analysis, linear and nonlinear (deterministic and stochastic) PDEs, infinite dimensional analysis, functional analysis, commutative and noncommutative probability theory, integrable systems, quantum and statistical mechanics, geometric quantization, and neural networks. Also included are applications in biology and other areas. Most of the contributions are high-level research papers. However, there are also some overviews on topics of general interest. The articles selected for publication in these volumes were specifically chosen to introduce readers to advanced topics, to emphasize interdisciplinary connections, and to stress future research directions. Volume I contains contributions from invited speakers; Volume II contains additional contributed papers. Members of the Canadian Mathematical Society may order at the AMS member price.
This collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results follow from those identities. 1955 edition.
Divided in two main parts, this title contains an assortment of material intended to give an understanding of some problems and techniques involving hyperbolic and parabolic equations. Suitable for graduate students and researchers interested in partial differential equations, it also includes a discussion of some quasi-linear elliptic equations.
This is a new and enlarged English edition of the book which, under the title "Formeln und Satze fur die Speziellen Funktionen der mathe matischen Physik" appeared in German in 1946. Much of the material (part of it unpublished) did not appear in the earlier editions. We hope that these additions will be useful and yet not too numerous for the purpose of locating .with ease any particular result. Compared to the first two (German) editions a change has taken place as far as the list of references is concerned. They are generally restricted to books and monographs and accomodated at the end of each individual chapter. Occasional references to papers follow those results to which they apply. The authors felt a certain justification for this change. At the time of the appearance of the previous edition nearly twenty years ago much of the material was scattered over a number of single contributions. Since then most of it has been included in books and monographs with quite exhaustive bibliographies. For information about numerical tables the reader is referred to "Mathematics of Computation", a periodical publis hed by the American Mathematical Society; "Handbook of Mathe matical Functions" with formulas, graphs and mathematical tables National Bureau of Standards Applied Mathematics Series, 55, 1964, 1046 pp., Government Printing Office, Washington, D.C., and FLETCHER, MILLER, ROSENHEAD, Index of Mathematical Tables, Addison-Wesley, Reading, Mass.) .. There is a list of symbols and abbreviations at the end of the book.
Fourier Expansions: A Collection of Formulas provides a collection of Fourier series. Its limited scope made a number of compromises necessary. The question regarding the choice and organization of the material to be included posed certain problems. In order to preserve some consistency it seemed best to stay within the framework of what one could call the ""classical"" Fourier series, i.e., those of the trigonometric and their simplest generalization the Fourier-Bessel series. The book is organized into five sections: Section I presents Fourier series with elementary coefficients representing elementary functions. Section II presents Fourier series with elementary coefficients representing higher functions. Section III presents Fourier series with higher function coefficients representing elementary functions. Section IV presents Fourier series with higher function coefficients representing higher functions. Section V presents exponential Fourier and Fourier-Bessel series. This arrangement should be helpful in equally balancing the task of either establishing the sum function of a given Fourier series or finding the Fourier expansion of a given function. It is hoped that this book will meet the requirements so often needed in applied mathematics, physics, and engineering.
Fourier Transforms of Distributions and Their Inverses: A Collection of Tables is a collection of tables on the integrals of Fourier transforms of distributions and their inverses involving the class of functions which are nonnegative and integrable over the interval. The emphasis is on the probability densities, and a number of examples are provided. This book is organized into two parts and begins with an introduction to those properties of characteristic functions which are important in probability theory, followed by a description of the tables and their use. The first three tables contain Fourier transforms of absolutely continuous distribution functions, namely, even functions (including Legendre functions); functions vanishing identically for negative values of the argument (including arbitrary powers); and functions that do not belong to either of the above classes. The transform pairs are numbered consecutively and arranged systematically according to the analytical character of the frequency function. The next two tables give the inverse transforms of the functions listed in the first and third tables, respectively. This monograph will appeal to students and specialists in the fields of probability and mathematical statistics.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.