Plasma plays an important role in a wide variety of industrial processes, including material processing, environmental control, electronic chip manufacturing, light sources, and green energy, not to mention fuel conversion and hydrogen production, biomedicine, flow control, catalysis, and space propulsion. Following the general outline of the bests
Providing a fundamental introduction to all aspects of modern plasma chemistry, this book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics and electrodynamics, as well as all major electric discharges applied in plasma chemistry. Fridman considers most of the major applications of plasma chemistry, from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production and from plasma metallurgy to plasma medicine. It is helpful to engineers, scientists and students interested in plasma physics, plasma chemistry, plasma engineering and combustion, as well as chemical physics, lasers, energy systems and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics and numerical formulas for practical calculations related to specific plasma-chemical processes and applications. Problems and concept questions are provided, helpful in courses related to plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and high-temperature and high-energy fluid mechanics.
Plasma Science and Technology An accessible introduction to the fundamentals of plasma science and its applications In Plasma Science and Technology: Lectures in Physics, Chemistry, Biology, and Engineering, distinguished researcher Dr. Alexander Fridman delivers a comprehensive introduction to plasma technology, including fulsome descriptions of the fundamentals of plasmas and discharges. The author discusses a wide variety of practical applications of the technology to medicine, energy, catalysis, coatings, and more, emphasizing engineering and science fundamentals. Offering readers illuminating problems and concept questions to support understanding and self-study, the book also details organic and inorganic applications of plasma technologies, demonstrating its use in nature, in the lab, and in both novel and well-known applications. Readers will also find: A thorough introduction to the kinetics of excited atoms and molecules Comprehensive explorations of non-equilibrium atmospheric pressure cold discharges Practical discussions of plasma processing in microelectronics and other micro-technologies Expert treatments of plasma in environmental control technologies, including the cleaning of air, exhaust gases, water, and soil Perfect for students of chemical engineering, physics, and chemistry, Plasma Science and Technology will also benefit professionals working in these fields who seek a contemporary refresher in the fundamentals of plasma science and its applications.
This comprehensive text is suitable for researchers and graduate students of a ‘hot’ new topic in medical physics. Written by the world’s leading experts, this book aims to present recent developments in plasma medicine, both technological and scientific, reviewed in a fashion accessible to the highly interdisciplinary audience consisting of doctors, physicists, biologists, chemists and other scientists, university students and professors, engineers and medical practitioners. The book focuses on major topics and covers the physics required to develop novel plasma discharges relevant for medical applications, the medicine to apply the technology not only in-vitro but also in-vivo testing and the biology to understand complicated bio-chemical processes involved in plasma interaction with living tissues.
Plasma Physics and Engineering presents basic and applied knowledge on modern plasma physics, plasma chemistry, and plasma engineering for senior undergraduate and graduate students as well as for scientists and engineers working in academia; research labs; and industry with plasmas, laser and, combustion systems. This is a unique book providing a clear fundamental introduction to all aspects of modern plasma science, describing all electric discharges applied today from vacuum to atmospheric pressure and higher, from thermal plasma sources to essentially cold non-equilibrium discharges. A solutions manual is available for adopting professors, which is helpful in relevant university courses. Provides a lucid introduction to virtually all aspects of modern plasma science and technology Contains an extensive database on plasma kinetics and thermodynamics Includes many helpful numerical formulas for practical calculations, as well as numerous problems and concepts This revised edition includes new material on atmospheric pressure discharges, micro discharges, and different types of discharges in liquids Prof. Alexander Fridman is Nyheim Chair Professor of Drexel University and Director of C. & J. Nyheim Plasma Institute. His research focuses on plasma approaches to biology and medicine, to material treatment, fuel conversion, and environmental control. Prof. Fridman has almost 50 years of plasma research in national laboratories and universities of Russia, France, and the United States. He has published 8 books, and received numerous honors for his work, including Stanley Kaplan Distinguished Professorship in Chemical Kinetics and Energy Systems, George Soros Distinguished Professorship in Physics, the State Prize of the USSR, Plasma Medicine Award, Kurchatov Prize, Reactive Plasma Award, and Plasma Chemistry Award. Prof. Lawrence A. Kennedy is Dean of Engineering Emeritus and Professor of Mechanical Engineering Emeritus at the University of Illinois at Chicago and Professor of Mechanical Engineering Emeritus at the Ohio State University. His research focuses on chemically reacting flows and plasma processes. He is the author of more than 300 archival publications and 2 books, the editor of three monographs and served as Editor-in-Chief of the International Journal of Experimental Methods in Thermal and Fluid Science. Professor Kennedy was the Ralph W. Kurtz Distinguished Professor of Mechanical Engineering at OSU and the Stanley Kaplan University Scholar in Plasma Physics at UIC. Prof. Kennedy is also the recipient of numerous awards such as the American Society of Mechanical Engineers Heat Transfer Memorial Award (2008), and the Ralph Coats Roe Award from ASEE (1993). He is a Fellow of the American Society of Mechanical Engineers, the American Physical Society, the American Institute of Aeronautics and Astronautics and the American Association for the Advancement of Science.
Providing a fundamental introduction to all aspects of modern plasma chemistry, this book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics and electrodynamics, as well as all major electric discharges applied in plasma chemistry. Fridman considers most of the major applications of plasma chemistry, from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production and from plasma metallurgy to plasma medicine. It is helpful to engineers, scientists and students interested in plasma physics, plasma chemistry, plasma engineering and combustion, as well as chemical physics, lasers, energy systems and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics and numerical formulas for practical calculations related to specific plasma-chemical processes and applications. Problems and concept questions are provided, helpful in courses related to plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and high-temperature and high-energy fluid mechanics.
Plasma methods that effectively combine ultraviolet radiation, active chemicals, and high electric fields offer an alternative to conventional water treatment methods. However, knowledge of the electric breakdown of liquids has not kept pace with this increasing interest, mostly due to the complexity of phenomena related to the plasma breakdown process. Plasma Discharge in Liquid: Water Treatment and Applications provides engineers and scientists with a fundamental understanding of the physical and chemical phenomena associated with plasma discharges in liquids, particularly in water. It also examines state-of-the-art plasma-assisted water treatment technologies. The Physics & Applications of Underwater Plasma Discharges The first part of the book describes the physical mechanism of pulsed electric breakdown in water and other liquids. It looks at how plasma is generated in liquids and discusses the electronic and bubble mechanism theories for how the electric discharge in liquid is initiated. The second part of the book focuses on various water treatment applications, including: Decontamination of volatile organic compounds and remediation of contaminated water Microorganism sterilization and other biological applications Cooling water treatment Drawing extensively on recent research, this one-stop reference combines the physics and applications of electric breakdown in liquids in a single volume. It offers a valuable resource for scientists, engineers, and students interested in the topic of plasmas in liquids.
Mathematics has been used as a tool in logistical reasoning for centuries. Examining how specific mathematic structures can aid in data and knowledge management helps determine how to efficiently and effectively process more information in these fields. N-ary Relations for Logical Analysis of Data and Knowledge is a critical scholarly reference source that provides a detailed study of the mathematical techniques currently involved in the progression of information technology fields. Featuring relevant topics that include algebraic sets, deductive analysis, defeasible reasoning, and probabilistic modeling, this publication is ideal for academicians, students, and researchers who are interested in staying apprised of the latest research in the information technology field.
Featuring original research from well-known experts in the field of sliding mode control, this book presents new design schemes for a useful and practical optimal control with very few impractical assumptions. The results presented allow optimal control theory to grow in its applicability to real-world systems. On the cutting-edge of optimal control research, this book is an excellent resource for both graduate students and researchers in engineering, mathematics, and optimal control.
In recent years, Western experts have generally portrayed the Kremlin’s actions as either strategic or tactical. Yet this proposition raises a very important question: how closely does the West’s interpretation of Russian strategy reflect the country’s own definitions? While many military historians have sought to interpret Russian strategy, Strategiya takes a different approach. It brings together, in English, the classic works of the Russian art of strategy, which were rediscovered after the collapse of the Soviet Union. Instead of explaining his analysis of Russia’s contemporary strategy, Ofer Fridman offers his translation of and commentary upon the founding texts of Russia’s own Clausewitzes, Baron Jominis and Liddell Harts, who have been inspiring Russian strategic thinking—both its conceptualisation and its implementation—from the moment Moscow rejected the exclusive role of Marxism-Leninism in strategic affairs. Russian contemporary strategists draw their inspiration from three main schools of thought. While works by Soviet military thinkers have already been translated into English, those by both Imperial strategists and military thinkers in exile have remained almost inaccessible to the Western reader. Filling this lacuna, Strategiya offers a fascinating glimpse inside the foundations of Russian strategic thought and practice.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.