This self-confessed introduction provides technical administrators and managers with a broad, practical overview of the subject and gives researchers working in different areas an appreciation of developments in nanotechnology outside their own fields of expertise.
A comprehensive coverage of the physical properties and real-world applications of magnetic nanostructures This book discusses how the important properties of materials such as the cohesive energy, and the electronic and vibrational structures are affected when materials have at least one length in the nanometer range. The author uses relatively simple models of the solid state to explain why these changes in the size and dimension in the nanometer regime occur. The text also reviews the physics of magnetism and experimental methods of measuring magnetic properties necessary to understanding how nanosizing affects magnetism. Various kinds of magnetic structures are presented by the author in order to explain how nanosizing influences their magnetic properties. The book also presents potential and actual applications of nanomaterials in the fields of medicine and computer data storage. Physics of Magnetic Nanostructures: Covers the magnetism in carbon and born nitride nanostructures, bulk nanostructured magnetic materials, nanostructured magnetic semiconductors, and the fabrication of magnetic nanostructures Discusses emerging applications of nanomaterials such as targeted delivery of drugs, enhancement of images in MRI, ferrofluids, and magnetic computer data storage Includes end-of-chapter exercises and five appendices Physics of Magnetic Nanostructures is written for senior undergraduate and graduate students in physics and nanotechnology, material scientists, chemists, and physicists.
A comprehensive textbook that addresses the recent interest in nanotechnology in the engineering, materials science, chemistry, and physics communities In recent years, nanotechnology has become one of the most promising and exciting fields of science, triggering an increasing number of university engineering, materials science, chemistry, and physics departments to introduce courses on this emerging topic. Now, Drs. Owens and Poole have revised, updated, and revamped their 2003 work, Introduction to Nanotechnology, to make it more accessible as a textbook for advanced undergraduate- and graduate-level courses on the fascinating field of nanotechnology and nanoscience. The Physics and Chemistry of Nanosolids takes a pedagogical approach to the subject and assumes only an introductory understanding of the physics and chemistry of macroscopic solids and models developed to explain properties, such as the theory of phonon and lattice vibrations and electronic band structure. The authors describe how properties depend on size in the nanometer regime and explain why these changes occur using relatively simple models of the physics and chemistry of the solid state. Additionally, this accessible book: Provides an introductory overview of the basic principles of solids Describes the various methods used to measure the properties of nanosolids Explains how and why properties change when reducing the size of solids to nano-dimensions, and what they predict when one or more dimensions of a solid has a nano-length Presents data on how various properties of solids are affected by nanosizing and examines why these changes occur Contains a chapter entirely devoted to the importance of carbon nanostructured materials and the potential applications of carbon nanostructures The Physics and Chemistry of Nanosolids is complete with a series of exercises at the end of each chapter for readers to enhance their understanding of the material presented, making this an ideal textbook for students and a valuable tutorial for technical professionals and researchers who are interested in learning more about this important topic.
The purpose of this book is two fold. First to explain the properties of low dimensional solids such as electronic, vibrational and magnetic structure in terms of simple models. These are used to account for the properties of three dimensional materials providing an elementary introduction to the physics of low dimensional materials. The second objective is to discuss the properties of newer low dimensional materials not made of carbon. These are now the subject of research and describe various phenomena in them such magnetism and superconductivity.
In 1987 a major breakthrough occurred in materials science. A new family of materials was discovered that became superconducting above the temperature at which nitrogen gas liquifies, namely, 77 K or –196°C. Within months of the discovery, a wide variety of experimental techniques were brought to bear in order to measure the properties of these materials and to gain an understanding of why they superconduct at such high temperatures. Among the techniques used were electromagnetic absorption in both the normal and the superconducting states. The measurements enabled the determination of a wide variety of properties, and in some instances led to the observation of new effects not seen by other measu- ments, such as the existence of weak-link microwave absorption at low dc magnetic fields. The number of different properties and the degree of detail that can be obtained from magnetic field- and temperature-dependent studies of electromagnetic abso- tion are not widely appreciated. For example, these measurements can provide information on the band gap, critical fields, the H–T irreversibility line, the amount of trapped flux, and even information about the symmetry of the wave function of the Cooper pairs. It is possible to use low dc magnetic field-induced absorption of microwaves with derivative detection to verify the presence of superconductivity in a matter of minutes, and the measurements are often more straightforward than others. For example, they do not require the physical contact with the sample that is necessary when using four-probe resistivity to detect superconductivity.
In The New Superconductors, Frank J. Owens and Charles P. Poole, Jr., offer a descriptive, non-mathematical presentation of the latest superconductors and their properties for the non-specialist. Highlights of this up-to-date text include chapters on superfluidity, the latest copper oxide types, fullerenes, and prospects for future research. The book also features many examples of commercial applications; an extensive glossary that defines superconductivity terms in clear language; and a supplementary list of readings for the interested lay reader.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.