This book groups the main advances in material forming, considering different processes, both conventional and non-conventional. It focuses on polymers, composites and metals, which are analyzed from the state of the art. Special emphasis is devoted to the contributions of the European Scientific Association for Material Forming (ESAFORM) during the last decade and in particular the ones coming from its annual international conference.
This book focuses on the development of a new simulation paradigm allowing for the solution of models that up to now have never been resolved and which result in spectacular CPU time savings (in the order of millions) that, combined with supercomputing, could revolutionize future ICT (information and communication technologies) at the heart of science and technology. The authors have recently proposed a new paradigm for simulation-based engineering sciences called Proper Generalized Decomposition, PGD, which has proved a tremendous potential in many aspects of forming process simulation. In this book a review of the basics of the technique is made, together with different examples of application.
How long did it take to prove. Aristotle's ideas about falling objects wrong ? How did science evolve from Democritus, the first philosopher to talk about the existence of atoms, to today's theories concerning the universe ? Can the world now be explained in the form of equations ? This volume - articulated in three parts: I. Classical Physics II. Modern Physics and III. Questions about the universe - answers all basic questions concerning the history of physics and physics. The approach chosen here is the one adopted by Franscico Chinesta for his Ecole Centrale de Nantes course. Although the content is targeted at top-level engineering students, this volume also addresses a non-scientific audience, giving everyone a chance to marvel at scientific research. Chinesta's chronological approach allows readers to understand how the world has gradually revealed its secrets through scientific observation, hypotheses, counterhypotheses and experimentation. Meanwhile a whole range of scientific phenomena is explained, tram why the sky is blue to what is a black hole. e simple language of the volume and titan . to hundreds of illustrations, physics to non the latest available to all.
Computational mechanics is the discipline concerned with the use of computational methods to study phenomena governed by the principles of mechanics. Before the emergence of computational science (also called scientific computing) as a "third way" besides theoretical and experimental sciences, computational mechanics was widely considered to be a sub-discipline of applied mechanics. It is now considered to be a sub-discipline within computational science. This book presents a recent state of the art on the foundations and applications of the meshless natural element method in computational mechanics, including structural mechanics and material forming processes involving solids and Newtonian and non-Newtonian fluids.
This SpringerBrief covers the main scales of description of matter, starting at its finest level, the quantum scale, moving through ab-initio, molecular dynamics, coarse grained approaches, to finish at the scale of kinetic theory models that allows a nice compromise between the rich but expensive microscopic descriptions and the computationally cheap but sometimes too coarse macroscopic descriptions. The book addresses undergraduate and graduate students, as well as beginners in multi-scale modeling of materials.
This book gives a detailed and practical introduction to complex flows of polymers and reinforced polymers as well as the flow of simple fluids in complex microstructures. Over the last decades, an increasing number of functional and structural parts, made so far with metals, has been progressively reengineered by replacing metallic materials by polymers, reinforced polymers and composites. The motivation for this substitution may be the weight reduction, the simpler, cheaper or faster forming process, or the ability to exploit additional functionalities. The present Brief surveys modern developments related to the multi-scale modeling and simulation of polymers, reinforced polymers, that involve a flowing microstructure and continuous fiber-reinforced composites, wherein the fluid flows inside a nearly stationary multi-scale microstructure. These developments concern both multi-scale modeling, defining bridges between the micro and macro scales - with special emphasis on the mesoscopic scale at which kinetic theory descriptions apply and advanced simulation techniques able to address efficiently the ever more complex and detailed models defined at different scales. This book is addressed to students (Master and doctoral levels), researchers and professionals interested in computational rheology and material forming processes involving polymers, reinforced polymers and composites. It provides a unique coverage of the state of the art in these multi-disciplinary fields.
This book focuses on the development of a new simulation paradigm allowing for the solution of models that up to now have never been resolved and which result in spectacular CPU time savings (in the order of millions) that, combined with supercomputing, could revolutionize future ICT (information and communication technologies) at the heart of science and technology. The authors have recently proposed a new paradigm for simulation-based engineering sciences called Proper Generalized Decomposition, PGD, which has proved a tremendous potential in many aspects of forming process simulation. In this book a review of the basics of the technique is made, together with different examples of application.
This SpringerBrief covers the main scales of description of matter, starting at its finest level, the quantum scale, moving through ab-initio, molecular dynamics, coarse grained approaches, to finish at the scale of kinetic theory models that allows a nice compromise between the rich but expensive microscopic descriptions and the computationally cheap but sometimes too coarse macroscopic descriptions. The book addresses undergraduate and graduate students, as well as beginners in multi-scale modeling of materials.
This book groups the main advances in material forming, considering different processes, both conventional and non-conventional. It focuses on polymers, composites and metals, which are analyzed from the state of the art. Special emphasis is devoted to the contributions of the European Scientific Association for Material Forming (ESAFORM) during the last decade and in particular the ones coming from its annual international conference.
This book gives a detailed and practical introduction to complex flows of polymers and reinforced polymers as well as the flow of simple fluids in complex microstructures. Over the last decades, an increasing number of functional and structural parts, made so far with metals, has been progressively reengineered by replacing metallic materials by polymers, reinforced polymers and composites. The motivation for this substitution may be the weight reduction, the simpler, cheaper or faster forming process, or the ability to exploit additional functionalities. The present Brief surveys modern developments related to the multi-scale modeling and simulation of polymers, reinforced polymers, that involve a flowing microstructure and continuous fiber-reinforced composites, wherein the fluid flows inside a nearly stationary multi-scale microstructure. These developments concern both multi-scale modeling, defining bridges between the micro and macro scales - with special emphasis on the mesoscopic scale at which kinetic theory descriptions apply and advanced simulation techniques able to address efficiently the ever more complex and detailed models defined at different scales. This book is addressed to students (Master and doctoral levels), researchers and professionals interested in computational rheology and material forming processes involving polymers, reinforced polymers and composites. It provides a unique coverage of the state of the art in these multi-disciplinary fields.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.