Strong dynamics constitutes one of the pillars of the standard model of particle interactions, and it accounts for the bulk of the visible matter in the universe made by ordinary protons and neutrons. It is therefore a well posed question to ask if the rest of the universe can be described in terms of new highly natural four-dimensional strongly coupled theories. The main goal of this lecture-based primer is to provide a coherent overview of how new strong dynamics can be employed to address the relevant challenges in particle physics and cosmology from composite Higgs dynamics to dark matter and inflation. We will first introduce the topic of dynamical breaking of the electroweak symmetry also known as technicolor. The knowledge of the phase diagram of strongly coupled theories plays a fundamental role when trying to construct viable extensions of the standard model. Therefore we present the state-of-the-art of the phase diagram for gauge theories as function of the number of colors, flavors, matter representation and gauge group. Recent extensions of the standard model featuring minimal technicolor theories are then introduced as relevant examples. We finally show how technicolor or in general new strongly coupled theories can lead to natural candidates of composite dark matter and inflation.
This book is a printed edition of the Special Issue "Selected Papers from SDEWES 2017: The 12th Conference on Sustainable Development of Energy, Water and Environment Systems" that was published in Energies
Research into “smart rubbers”, i.e. elastomeric materials that respond to external stimuli, has increased dramatically recently, predominantly due to the growing need for improved materials for new applications. This book aims to provide an overview over the field of smart rubber research. Examples of the various components involved in smart rubbers are highlighted and discussed. Different types of stimuli and numerous applications are explained.
Strong dynamics constitutes one of the pillars of the standard model of particle interactions, and it accounts for the bulk of the visible matter in the universe made by ordinary protons and neutrons. It is therefore a well posed question to ask if the rest of the universe can be described in terms of new highly natural four-dimensional strongly coupled theories. The main goal of this lecture-based primer is to provide a coherent overview of how new strong dynamics can be employed to address the relevant challenges in particle physics and cosmology from composite Higgs dynamics to dark matter and inflation. We will first introduce the topic of dynamical breaking of the electroweak symmetry also known as technicolor. The knowledge of the phase diagram of strongly coupled theories plays a fundamental role when trying to construct viable extensions of the standard model. Therefore we present the state-of-the-art of the phase diagram for gauge theories as function of the number of colors, flavors, matter representation and gauge group. Recent extensions of the standard model featuring minimal technicolor theories are then introduced as relevant examples. We finally show how technicolor or in general new strongly coupled theories can lead to natural candidates of composite dark matter and inflation.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.