Polynomials are useful mathematical tools. They are simply defined and can be calculated quickly on computer systems. They can be differentiated and integrated easily and can be pieced together to form spline curves. After Weierstrass approximation Theorem, polynomial sequences have acquired considerable importance not only in the various branches of Mathematics, but also in Physics, Chemistry and Engineering disciplines. There is a wide literature on specific polynomial sequences. But there is no literature that attempts a systematic exposition of the main basic methods for the study of a generic polynomial sequence and, at the same time, gives an overview of the main polynomial classes and related applications, at least in numerical analysis. In this book, through an elementary matrix calculus-based approach, an attempt is made to fill this gap by exposing dated and very recent results, both theoretical and applied.
This book presents a novel approach to umbral calculus, which uses only elementary linear algebra (matrix calculus) based on the observation that there is an isomorphism between Sheffer polynomials and Riordan matrices, and that Sheffer polynomials can be expressed in terms of determinants. Additionally, applications to linear interpolation and operator approximation theory are presented in many settings related to various families of polynomials.
Polynomials are useful mathematical tools. They are simply defined and can be calculated quickly on computer systems. They can be differentiated and integrated easily and can be pieced together to form spline curves. After Weierstrass approximation Theorem, polynomial sequences have acquired considerable importance not only in the various branches of Mathematics, but also in Physics, Chemistry and Engineering disciplines. There is a wide literature on specific polynomial sequences. But there is no literature that attempts a systematic exposition of the main basic methods for the study of a generic polynomial sequence and, at the same time, gives an overview of the main polynomial classes and related applications, at least in numerical analysis. In this book, through an elementary matrix calculus-based approach, an attempt is made to fill this gap by exposing dated and very recent results, both theoretical and applied.
This book presents a novel approach to umbral calculus, which uses only elementary linear algebra (matrix calculus) based on the observation that there is an isomorphism between Sheffer polynomials and Riordan matrices, and that Sheffer polynomials can be expressed in terms of determinants. Additionally, applications to linear interpolation and operator approximation theory are presented in many settings related to various families of polynomials.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.