A practical introduction to intelligent computer vision theory, design, implementation, and technology The past decade has witnessed epic growth in image processing and intelligent computer vision technology. Advancements in machine learning methods—especially among adaboost varieties and particle filtering methods—have made machine learning in intelligent computer vision more accurate and reliable than ever before. The need for expert coverage of the state of the art in this burgeoning field has never been greater, and this book satisfies that need. Fully updated and extensively revised, this 2nd Edition of the popular guide provides designers, data analysts, researchers and advanced post-graduates with a fundamental yet wholly practical introduction to intelligent computer vision. The authors walk you through the basics of computer vision, past and present, and they explore the more subtle intricacies of intelligent computer vision, with an emphasis on intelligent measurement systems. Using many timely, real-world examples, they explain and vividly demonstrate the latest developments in image and video processing techniques and technologies for machine learning in computer vision systems, including: PRTools5 software for MATLAB—especially the latest representation and generalization software toolbox for PRTools5 Machine learning applications for computer vision, with detailed discussions of contemporary state estimation techniques vs older content of particle filter methods The latest techniques for classification and supervised learning, with an emphasis on Neural Network, Genetic State Estimation and other particle filter and AI state estimation methods All new coverage of the Adaboost and its implementation in PRTools5. A valuable working resource for professionals and an excellent introduction for advanced-level students, this 2nd Edition features a wealth of illustrative examples, ranging from basic techniques to advanced intelligent computer vision system implementations. Additional examples and tutorials, as well as a question and solution forum, can be found on a companion website.
Classification, Parameter Estimation and State Estimation is a practical guide for data analysts and designers of measurement systems and postgraduates students that are interested in advanced measurement systems using MATLAB. 'Prtools' is a powerful MATLAB toolbox for pattern recognition and is written and owned by one of the co-authors, B. Duin of the Delft University of Technology. After an introductory chapter, the book provides the theoretical construction for classification, estimation and state estimation. The book also deals with the skills required to bring the theoretical concepts to practical systems, and how to evaluate these systems. Together with the many examples in the chapters, the book is accompanied by a MATLAB toolbox for pattern recognition and classification. The appendix provides the necessary documentation for this toolbox as well as an overview of the most useful functions from these toolboxes. With its integrated and unified approach to classification, parameter estimation and state estimation, this book is a suitable practical supplement in existing university courses in pattern classification, optimal estimation and data analysis. Covers all contemporary main methods for classification and estimation. Integrated approach to classification, parameter estimation and state estimation Highlights the practical deployment of theoretical issues. Provides a concise and practical approach supported by MATLAB toolbox. Offers exercises at the end of each chapter and numerous worked out examples. PRtools toolbox (MATLAB) and code of worked out examples available from the internet Many examples showing implementations in MATLAB Enables students to practice their skills using a MATLAB environment
The kidney plays a vital role in certain endocrine functions. Abnormalities caused by toxic chemicals or other interventions can have profound effects on these functions and consequently, on total functions. Toxicology of the Kidney, Third Edition is updated to reflect the latest research in this field and focuses on the correlation between anatomy
First Published in 1997. This book is an updated version of the author's 1994 dissertation, submitted to the Graduate School of the University of Southern California. With updated references footnotes pointing to research published after May 1994, this study of modality showcases its long history. Yet, for many centuries it seemed to be the exclusive domain of philosophers. It was not recognized by linguists as a separate object for study until comparatively recent times. The author argues that the other component of this study, negation, has fared much better.
Classification, Parameter Estimation and State Estimation is a practical guide for data analysts and designers of measurement systems and postgraduates students that are interested in advanced measurement systems using MATLAB. 'Prtools' is a powerful MATLAB toolbox for pattern recognition and is written and owned by one of the co-authors, B. Duin of the Delft University of Technology. After an introductory chapter, the book provides the theoretical construction for classification, estimation and state estimation. The book also deals with the skills required to bring the theoretical concepts to practical systems, and how to evaluate these systems. Together with the many examples in the chapters, the book is accompanied by a MATLAB toolbox for pattern recognition and classification. The appendix provides the necessary documentation for this toolbox as well as an overview of the most useful functions from these toolboxes. With its integrated and unified approach to classification, parameter estimation and state estimation, this book is a suitable practical supplement in existing university courses in pattern classification, optimal estimation and data analysis. Covers all contemporary main methods for classification and estimation. Integrated approach to classification, parameter estimation and state estimation Highlights the practical deployment of theoretical issues. Provides a concise and practical approach supported by MATLAB toolbox. Offers exercises at the end of each chapter and numerous worked out examples. PRtools toolbox (MATLAB) and code of worked out examples available from the internet Many examples showing implementations in MATLAB Enables students to practice their skills using a MATLAB environment
A practical introduction to intelligent computer vision theory, design, implementation, and technology The past decade has witnessed epic growth in image processing and intelligent computer vision technology. Advancements in machine learning methods—especially among adaboost varieties and particle filtering methods—have made machine learning in intelligent computer vision more accurate and reliable than ever before. The need for expert coverage of the state of the art in this burgeoning field has never been greater, and this book satisfies that need. Fully updated and extensively revised, this 2nd Edition of the popular guide provides designers, data analysts, researchers and advanced post-graduates with a fundamental yet wholly practical introduction to intelligent computer vision. The authors walk you through the basics of computer vision, past and present, and they explore the more subtle intricacies of intelligent computer vision, with an emphasis on intelligent measurement systems. Using many timely, real-world examples, they explain and vividly demonstrate the latest developments in image and video processing techniques and technologies for machine learning in computer vision systems, including: PRTools5 software for MATLAB—especially the latest representation and generalization software toolbox for PRTools5 Machine learning applications for computer vision, with detailed discussions of contemporary state estimation techniques vs older content of particle filter methods The latest techniques for classification and supervised learning, with an emphasis on Neural Network, Genetic State Estimation and other particle filter and AI state estimation methods All new coverage of the Adaboost and its implementation in PRTools5. A valuable working resource for professionals and an excellent introduction for advanced-level students, this 2nd Edition features a wealth of illustrative examples, ranging from basic techniques to advanced intelligent computer vision system implementations. Additional examples and tutorials, as well as a question and solution forum, can be found on a companion website.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.