Failure in Geomaterials offers a unified view of material failure as an instability of deformation modes framed within the theory of bifurcation. Using mathematical rigor, logic, physical reasoning and basic principles of mechanics, the authors develop the fundamentals of failure in geomaterials based on the second-order work criterion. Various forms of rupture modes and material instabilities in granular materials are explored both analytically and numerically with lab experimental observations on sand as a backdrop. The authors provide a clear picture of inelastic deformations and failure of geomaterials under various loading conditions. A unique feature of the book is the systematic application of the developed theory to the failure analysis of some selected engineering problems such as soil nailing, landslides, energy resource extraction, and internal erosion in soils. - Provides the fundamentals of the mechanics of geomaterials for a detailed background on the subject - Integrates a rigorous mathematical description of failure with mechanisms based on microstructure - Helps users apply mathematical models of solid mechanics to engineering practice - Contains a systematic development of the fundamentals of failure in heterogeneous multiphasic materials
Stability of Discrete Non-conservative Systems first exposes the general concepts and results concerning stability issues. It then presents an approach of stability that is different from Lyapunov which leads to the second order work criterion. Thanks to the new concept of Kinematic Structural Stability, a complete equivalence between two approaches of stability is obtained for a divergent type of stability. Extensions to flutter instability, to continuous systems, and to the dual questions concerning the measure of non-conservativeness provides a full, fresh look at these fundamental questions. A special chapter is devoted to applications for granular systems. - Presents a structured review on stability questions - Provides analytical methods and key concepts that may be used in non-conservative frameworks like hypoelasticity
Failure in Geomaterials offers a unified view of material failure as an instability of deformation modes framed within the theory of bifurcation. Using mathematical rigor, logic, physical reasoning and basic principles of mechanics, the authors develop the fundamentals of failure in geomaterials based on the second-order work criterion. Various forms of rupture modes and material instabilities in granular materials are explored both analytically and numerically with lab experimental observations on sand as a backdrop. The authors provide a clear picture of inelastic deformations and failure of geomaterials under various loading conditions. A unique feature of the book is the systematic application of the developed theory to the failure analysis of some selected engineering problems such as soil nailing, landslides, energy resource extraction, and internal erosion in soils. - Provides the fundamentals of the mechanics of geomaterials for a detailed background on the subject - Integrates a rigorous mathematical description of failure with mechanisms based on microstructure - Helps users apply mathematical models of solid mechanics to engineering practice - Contains a systematic development of the fundamentals of failure in heterogeneous multiphasic materials
Stability of Discrete Non-conservative Systems first exposes the general concepts and results concerning stability issues. It then presents an approach of stability that is different from Lyapunov which leads to the second order work criterion. Thanks to the new concept of Kinematic Structural Stability, a complete equivalence between two approaches of stability is obtained for a divergent type of stability. Extensions to flutter instability, to continuous systems, and to the dual questions concerning the measure of non-conservativeness provides a full, fresh look at these fundamental questions. A special chapter is devoted to applications for granular systems. - Presents a structured review on stability questions - Provides analytical methods and key concepts that may be used in non-conservative frameworks like hypoelasticity
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.