Charged-Particle Reaction List 1948-1971 is a guide to experiments on charged-particle-induced reactions that have been reported in journal literature during the period 1948 to June 1971. This compendium consists of the material from four Reaction Lists which have already appeared in Nuclear Data Tables. Each published article is listed under the target nuclei in the nuclear reactions which it treats. Reactions are denoted by A(a,b)B, where A and B are the target and residual nucleus, respectively; a is the bombarding charged particle and b is the outgoing product particle or particles. The guide also includes a brief information after the reaction designation, namely, the energy E of the bombarding projectile in MeV, a short statement of the type of data that is found in the paper, and a bibliographic information on the paper itself. A symbol THY in the extreme right-hand column denotes the theoretical papers concerned with analysis of nuclear reaction data. For papers dealing with experimental data on energy spectra, the angle of observation of the emerging reaction products, the accelerator, as well as the detector used are given for many entries under the column heading "Quantity Measured." The guide will prove immensely useful for theoretical physicists, nuclear physicists, and molecular physicists.
The book provides a valuable source of technical content for the prediction and analysis of advanced heat transfer problems, including conduction, convection, radiation, phase change, and chemically reactive modes of heat transfer. With more than 20 new sections, case studies, and examples, the Third Edition broadens the scope of thermal engineering applications, including but not limited to biomedical, micro- and nanotechnology, and machine learning. The book features a chapter devoted to each mode of multiphase heat transfer. FEATURES Covers the analysis and design of advanced thermal engineering systems Presents solution methods that can be applied to complex systems such as semi-analytical, machine learning, and numerical methods Includes a chapter devoted to each mode of multiphase heat transfer, including boiling, condensation, solidification, and melting Explains processes and governing equations of multiphase flows with droplets and particles Applies entropy and the second law of thermodynamics for the design and optimization of thermal engineering systems Advanced Heat Transfer, Third Edition, offers a comprehensive source for single and multiphase systems of heat transfer for senior undergraduate and graduate students taking courses in advanced heat transfer, multiphase fluid mechanics, and advanced thermodynamics. A solutions manual is provided to adopting instructors.
The purpose of this 4-volume set is to examine some of the applications of lasers in polymer science and technology. Now available for the first time, up-to-date information on this fascinating subject is compiled and presented in compact form. This set focuses on current research and developments in the application of lasers in polymer and biopolymer chemistry. It includes experimental and theoretical details, apparatus, techniques, and applications. This set is a useful source for researchers, students, polymer chemists, and physicists involved in this astonishing field of high technology.
Separation of the elements of classical mechanics into kinematics and dynamics is an uncommon tutorial approach, but the author uses it to advantage in this two-volume set. Students gain a mastery of kinematics first – a solid foundation for the later study of the free-body formulation of the dynamics problem. A key objective of these volumes, which present a vector treatment of the principles of mechanics, is to help the student gain confidence in transforming problems into appropriate mathematical language that may be manipulated to give useful physical conclusions or specific numerical results. In the first volume, the elements of vector calculus and the matrix algebra are reviewed in appendices. Unusual mathematical topics, such as singularity functions and some elements of tensor analysis, are introduced within the text. A logical and systematic building of well-known kinematic concepts, theorems, and formulas, illustrated by examples and problems, is presented offering insights into both fundamentals and applications. Problems amplify the material and pave the way for advanced study of topics in mechanical design analysis, advanced kinematics of mechanisms and analytical dynamics, mechanical vibrations and controls, and continuum mechanics of solids and fluids. Volume I of Principles of Engineering Mechanics provides the basis for a stimulating and rewarding one-term course for advanced undergraduate and first-year graduate students specializing in mechanics, engineering science, engineering physics, applied mathematics, materials science, and mechanical, aerospace, and civil engineering. Professionals working in related fields of applied mathematics will find it a practical review and a quick reference for questions involving basic kinematics.
This is the second book in the “Ask the Physicist” series. The first book, From Newton to Einstein: Ask the physicist about mechanics and relativity, provides an excellent foundation for this book that covers topics in ‘modern’ physics. The main emphasis of this volume is providing an accessible introduction to quantum physics, atomic physics, and nuclear physics to anyone with at least high-school physics knowledge.
Introduction to Renewable Power Systems and the Environment with R showcases the fundamentals of electrical power systems while examining their relationships with the environment. To address the broad range of interrelated problems that come together when generating electricity, this reference guide ties together multiple engineering disciplines with applied sciences. The author merges chapters on thermodynamics, electricity, and environmental systems to make learning fluid and comfortable for students with different backgrounds. Additionally, this book provides users with the opportunity to execute computer examples and exercises that use the open source R system. Functions of the renpow R package have been described and used in this book in the context of specific examples. The author lays out a clear understanding of how electricity is produced around the world and focuses on the shift from carbon-based energy conversions to other forms including renewables. Each energy conversion system is approached both theoretically and practically to provide a comprehensive guide. Electrical circuits are introduced from the simplest circumstances of direct current (DC), progressing to more complex alternating current (AC) circuits, single phase and three-phase, and electromagnetic devices including generators and transformers. Thermodynamics are employed to understand heat engines and a variety of processes in electrochemical energy conversion, such as fuel cells. The book emphasizes the most prevalent renewable energy conversions in use today: hydroelectrical, wind, and solar. This book is an invaluable for students as a resource to help them understand those aspects of environment systems that motivate the development and utilization of renewable power systems technology.
This textbook series has been designed for final year undergraduate and first year graduate students, providing an overview of the entire field showing how specialized topics are part of the wider whole, and including references to current areas of literature and research.
Provides students and practitioners with a comprehensive understanding of the theory of spectroscopy and the design and use of spectrophotometers In this book, you will learn the fundamental principles underpinning molecular spectroscopy and the connections between those principles and the design of spectrophotometers. Spectroscopy, along with chromatography, mass spectrometry, and electrochemistry, is an important and widely-used analytical technique. Applications of spectroscopy include air quality monitoring, compound identification, and the analysis of paintings and culturally important artifacts. This book introduces students to the fundamentals of molecular spectroscopy – including UV-visible, infrared, fluorescence, and Raman spectroscopy – in an approachable and comprehensive way. It goes beyond the basics of the subject and provides a detailed look at the interplay between theory and practice, making it ideal for courses in quantitative analysis, instrumental analysis, and biochemistry, as well as courses focused solely on spectroscopy. It is also a valuable resource for practitioners working in laboratories who regularly perform spectroscopic analyses. Spectroscopy: Principles and Instrumentation: Provides extensive coverage of principles, instrumentation, and applications of molecular spectroscopy Facilitates a modular approach to teaching and learning about chemical instrumentation Helps students visualize the effects that electromagnetic radiation in different regions of the spectrum has on matter Connects the fundamental theory of the effects of electromagnetic radiation on matter to the design and use of spectrophotometers Features numerous figures and diagrams to facilitate learning Includes several worked examples and companion exercises throughout each chapter so that readers can check their understanding Offers numerous problems at the end of each chapter to allow readers to apply what they have learned Includes case studies that illustrate how spectroscopy is used in practice, including analyzing works of art, studying the kinetics of enzymatic reactions, detecting explosives, and determining the DNA sequence of the human genome Complements Chromatography: Principles and Instrumentation The book is divided into five chapters that cover the Fundamentals of Spectroscopy, UV-visible Spectroscopy, Fluorescence/Luminescence Spectroscopy, Infrared Spectroscopy, and Raman Spectroscopy. Each chapter details the theory upon which the specific techniques are based, provides ways for readers to visualize the molecular-level effects of electromagnetic radiation on matter, describes the design and components of spectrophotometers, discusses applications of each type of spectroscopy, and includes case studies that illustrate specific applications of spectroscopy. Each chapter is divided into multiple sections using headings and subheadings, making it easy for readers to work through the book and to find specific information relevant to their interests. Numerous figures, exercises, worked examples, and end-of-chapter problems reinforce important concepts and facilitate learning. Spectroscopy: Principles and Instrumentation is an excellent text that prepares undergraduate students and practitioners to operate in modern laboratories.
The second edition of this must-have reference covers power quality issues in four parts, including new discussions related to renewable energy systems. The first part of the book provides background on causes, effects, standards, and measurements of power quality and harmonics. Once the basics are established the authors move on to harmonic modeling of power systems, including components and apparatus (electric machines). The final part of the book is devoted to power quality mitigation approaches and devices, and the fourth part extends the analysis to power quality solutions for renewable energy systems. Throughout the book worked examples and exercises provide practical applications, and tables, charts, and graphs offer useful data for the modeling and analysis of power quality issues. - Provides theoretical and practical insight into power quality problems of electric machines and systems - 134 practical application (example) problems with solutions - 125 problems at the end of chapters dealing with practical applications - 924 references, mostly journal articles and conference papers, as well as national and international standards and guidelines
This study of electromagnetic theory introduces students to a broad range of quantities and concepts, imparting the necessary vector analysis and associated mathematics and reinforcing its teachings with several elementary field problems. Based on circuit theory rather than on the classical force-relationship approach, the text uses the theory of electric circuits to provide a system of experiments already familiar to the electrical engineer; a series of field concepts are then introduced as a logical extension of circuit theory. Virtually unobtainable elsewhere, this text was written by a prominent professor whose recognition includes the prestigious IEEE Electromagnetics Award. It is appropriate for advanced undergraduate and graduate students with a background in calculus and circuit theory. 176 Figures. 9 Tables.
Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practising engineers in optoelectronics and related areas.
This second edition of Principles of Solar Engineering covers the latest developments in a broad range of topics of interest to students and professionals interested in solar energy applications. With the scientific fundamentals included, the book covers important areas such as heating and cooling, passive solar applications, detoxification and biomass energy conversion. This comprehensive textbook provides examples of methods of solar engineering from around the world and includes examples, solutions and data applicable to international solar energy issues. A solutions manual is available to qualified instructors.
This textbook develops general relativity and its associated mathematics from a minimum of prerequisites, leading to a physical understanding of the theory in some depth.
MPEG-7 is the first international standard which contains a number of key techniques from Computer Vision and Image Processing. The Curvature Scale Space technique was selected as a contour shape descriptor for MPEG-7 after substantial and comprehensive testing, which demonstrated the superior performance of the CSS-based descriptor. Curvature Scale Space Representation: Theory, Applications, and MPEG-7 Standardization is based on key publications on the CSS technique, as well as its multiple applications and generalizations. The goal was to ensure that the reader will have access to the most fundamental results concerning the CSS method in one volume. These results have been categorized into a number of chapters to reflect their focus as well as content. The book also includes a chapter on the development of the CSS technique within MPEG standardization, including details of the MPEG-7 testing and evaluation processes which led to the selection of the CSS shape descriptor for the standard. The book can be used as a supplementary textbook by any university or institution offering courses in computer and information science.
Progress in Photochemistry and Photophysics is a multiple-volume set that presents a critical review of developments in the inorganic, organic, atmospheric, environmental, material, bio- and polymer fields of photochemistry and photophysics . The book provides essential information for students and researchers in photochemistry and photophysics.
The year 1986 marked the sesquicentennial of the publication in 1836 of J Sturm's memoir on boundary value problems for second order equations. In July 1986, the Canadian Mathematical Society sponsored the International Conference on Oscillation, Bifurcation and Chaos. This volume contains the proceedings of this conference.
This book is the expanded version of the earlier (first edition) text. It presents new comprehensive rational quantitative theories (utilizing fundamental energy concepts throughout) covering the entire earthquake event from the point of view of the engineer. It starts with a mathematical analysis of an underground mechanism (the earthquake), then proceeds to determinations of the timewise and spacewise variations of the fundamental engineering damage-design parameter, the ground energy. Finally, the new theories are applied to a number of typical (actual) structural and non-structural design problems. Each chapter of the first edition has now been improved and enlarged and new chapters have been added to include recent research by the author and his graduate students.
Materials: Engineering, Science, Processing and Design is the essential materials engineering text and resource for students developing skills and understanding of materials properties and selection for engineering applications. Taking a unique design-led approach that is broader in scope than other texts, Materials meets the curriculum needs of a wide variety of courses in the materials and design field, including introduction to materials science and engineering, engineering materials, materials selection and processing, and behavior of materials. This new edition retains its design-led focus and strong emphasis on visual communication while expanding its coverage of the physical basis of material properties, and process selection. - Design-led approach motivates and engages students in the study of materials science and engineering through real-life case studies and illustrative applications - Highly visual full color graphics facilitate understanding of materials concepts and properties - Chapters on materials selection and design are integrated with chapters on materials fundamentals, enabling students to see how specific fundamentals can be important to the design process - For instructors, a solutions manual, lecture slides, and image bank are available at https://educate.elsevier.com/book/details/9780081023761 - Links to Granta EduPack sample data sheets: https://www.grantadesign.com/education/ces-edupack/granta-edupack-data/ces-edupack-sample-datasheets/ for information New to this edition - Expansion of the atomic basis of properties, and the distinction between bonding-sensitive and microstructure-sensitive properties - Process selection extended to include a structured approach to managing the expert knowledge of how materials, processes and design interact (with an introduction to additive manufacturing) - Coverage of materials and the environment has been updated with a new section on Sustainability and Sustainable Technology - Text and figures have been revised and updated throughout - The number of worked examples and end-of-chapter problems has been significantly increased
Taking a detailed, non-mathematical approach to the principles on which remote sensing is based, this book progresses from the physical principles to the application of remote sensing.
Over 1900 references to literature published mostly from 1962 through Sept., 1969. Covers journals, reports, monographs, symposia, patents, and a few Russian newspaper items. Most of the 1129 articles were from semi-popular journals. Alphabetical arrangement by author. Permuted subject index, author index.
Feagin's book was the first publication dealing with Quantum Mechanics using Mathematica, the popular software distributed by Wolfram Research, and designed to facilitate scientists and engineers to do difficult scientific computations more quickly and more easily. Quantum Methods with Mathematica, the first book of ist kind, has achieved worldwide success and critical acclaim.
From engineering fluid mechanics to power systems, information coding theory and other fields, entropy is key to maximizing performance in engineering systems. It serves a vital role in achieving the upper limits of efficiency of industrial processes and quality of manufactured products. Entropy based design (EBD) can shed new light on various flow
The transverse field Ising and XY models (the simplest quantum spin models) provide the organising principle for the rich variety of interconnected subjects which are covered in this book. From a generic introduction to in-depth discussions of the subtleties of the transverse field Ising and related models, it includes the essentials of quantum dynamics and quantum information. A wide range of relevant topics has also been provided: quantum phase transitions, various measures of quantum information, the effects of disorder and frustration, quenching dynamics and the Kibble–Zurek scaling relation, the Kitaev model, topological phases of quantum systems, and bosonisation. In addition, it also discusses the experimental studies of transverse field models (including the first experimental realisation of quantum annealing) and the recent realisation of the transverse field Ising model using tunable Josephson junctions. Further, it points to the obstacles still remaining to develop a successful quantum computer.
This book, Oscillators and Advanced Electronics Topics, is the final book of a larger, four-book set, Fundamentals of Electronics. It consists of five chapters that further develop practical electronic applications based on the fundamental principles developed in the first three books. This book begins by extending the principles of electronic feedback circuits to linear oscillator circuits. The second chapter explores non-linear oscillation, waveform generation, and waveshaping. The third chapter focuses on providing clean, reliable power for electronic applications where voltage regulation and transient suppression are the focus. Fundamentals of communication circuitry form the basis for the fourth chapter with voltage-controlled oscillators, mixers, and phase-lock loops being the primary focus. The final chapter expands upon early discussions of logic gate operation (introduced in Book 1) to explore gate speed and advanced gate topologies. Fundamentals of Electronics has been designed primarily for use in upper division courses in electronics for electrical engineering students and for working professionals. Typically such courses span a full academic year plus an additional semester or quarter. As such, Oscillators and Advanced Electronics Topics and the three companion book of Fundamentals of Electronics form an appropriate body of material for such courses.
A unique plant on many levels, the distinctive properties of the Jerusalem artichoke, or Helianthus tuberosus L., present novel answers to some of today's most pressing problems. The potential of Jerusalem artichoke as a source for inulin, a fructose polymer that may provide dietary health benefits for obesity, diabetes, and several other health is
The years 2006 and 2007 mark a dramatic change of peoples view regarding c- mate change and energy consumption. The new IPCC report makes clear that - mankind plays a dominant role on climate change due to CO emissions from en- 2 ergy consumption, and that a significant reduction in CO emissions is necessary 2 within decades. At the same time, the supply of fossil energy sources like coal, oil, and natural gas becomes less reliable. In spring 2008, the oil price rose beyond 100 $/barrel for the first time in history. It is commonly accepted today that we have to reduce the use of fossil fuels to cut down the dependency on the supply countries and to reduce CO emissions. The use of renewable energy sources and 2 increased energy efficiency are the main strategies to achieve this goal. In both strategies, heat and cold storage will play an important role. People use energy in different forms, as heat, as mechanical energy, and as light. With the discovery of fire, humankind was the first time able to supply heat and light when needed. About 2000 years ago, the Romans started to use ceramic tiles to store heat in under floor heating systems. Even when the fire was out, the room stayed warm. Since ancient times, people also know how to cool food with ice as cold storage.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.