The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.
Multi-Criteria Decision Making (MCDM) has been one of the fastest growing problem areas in many disciplines. The central problem is how to evaluate a set of alternatives in terms of a number of criteria. Although this problem is very relevant in practice, there are few methods available and their quality is hard to determine. Thus, the question `Which is the best method for a given problem?' has become one of the most important and challenging ones. This is exactly what this book has as its focus and why it is important. The author extensively compares, both theoretically and empirically, real-life MCDM issues and makes the reader aware of quite a number of surprising `abnormalities' with some of these methods. What makes this book so valuable and different is that even though the analyses are rigorous, the results can be understood even by the non-specialist. Audience: Researchers, practitioners, and students; it can be used as a textbook for senior undergraduate or graduate courses in business and engineering.
The main goal of the new field of data mining is the analysis of large and complex datasets. Some very important datasets may be derived from business and industrial activities. This kind of data is known as “enterprise data”. The common characteristic of such datasets is that the analyst wishes to analyze them for the purpose of designing a more cost-effective strategy for optimizing some type of performance measure, such as reducing production time, improving quality, eliminating wastes, or maximizing profit. Data in this category may describe different scheduling scenarios in a manufacturing environment, quality control of some process, fault diagnosis in the operation of a machine or process, risk analysis when issuing credit to applicants, management of supply chains in a manufacturing system, or data for business related decision-making.
Presents recent advances in both models and systems for intelligent decision making. Organisations often face complex decisions requiring the assessment of large amounts of data. In recent years Multicriteria Decision Aid (MCDA) and Artificial Intelligence (AI) techniques have been applied with considerable success to support decision making in a wide range of complex real-world problems. The integration of MCDA and AI provides new capabilities relating to the structuring of complex decision problems in static and distributed environments. These include the handling of massive data sets, the modelling of ill-structured information, the construction of advanced decision models, and the development of efficient computational optimization algorithms for problem solving. This book covers a rich set of topics, including intelligent decision support technologies, data mining models for decision making, evidential reasoning, evolutionary multiobjective optimization, fuzzy modelling, as well as applications in management and engineering. Multicriteria Decision Aid and Artificial Intelligence: Covers all of the recent advances in intelligent decision making. Includes a presentation of hybrid models and algorithms for preference modelling and optimisation problems. Provides illustrations of new intelligent technologies and architectures for decision making in static and distributed environments. Explores the general topics on preference modelling and learning, along with the coverage of the main techniques and methodologies and applications. Is written by experts in the field. This book provides an excellent reference tool for the increasing number of researchers and practitioners interested in the integration of MCDA and AI for the development of effective hybrid decision support methodologies and systems. Academics and post-graduate students in the fields of operational research, artificial intelligence and management science or decision analysis will also find this book beneficial.
Multi-Criteria Decision Making (MCDM) has been one of the fastest growing problem areas in many disciplines. The central problem is how to evaluate a set of alternatives in terms of a number of criteria. Although this problem is very relevant in practice, there are few methods available and their quality is hard to determine. Thus, the question `Which is the best method for a given problem?' has become one of the most important and challenging ones. This is exactly what this book has as its focus and why it is important. The author extensively compares, both theoretically and empirically, real-life MCDM issues and makes the reader aware of quite a number of surprising `abnormalities' with some of these methods. What makes this book so valuable and different is that even though the analyses are rigorous, the results can be understood even by the non-specialist. Audience: Researchers, practitioners, and students; it can be used as a textbook for senior undergraduate or graduate courses in business and engineering.
The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.