Using real-world data examples, this authoritative book shows how to use the latest configural frequency analysis (CFA) techniques to analyze categorical data. Some of the techniques are presented here for the first time. In contrast to methods that focus on relationships among variables, such as log-linear modeling, CFA allows researchers to evaluate differences and change at the level of individual cells in a table. Illustrated are ways to identify and test for cell configurations that are either consistent with or contrary to hypothesized patterns (the types and antitypes of CFA); control for potential covariates that might influence observed results; develop innovative prediction models; address questions of moderation and mediation; and analyze intensive longitudinal data. The book also describes free software applications for executing CFA.
Agreement among raters is of great importance in many domains. For example, in medicine, diagnoses are often provided by more than one doctor to make sure the proposed treatment is optimal. In criminal trials, sentencing depends, among other things, on the complete agreement among the jurors. In observational studies, researchers increase reliability by examining discrepant ratings. This book is intended to help researchers statistically examine rater agreement by reviewing four different approaches to the technique. The first approach introduces readers to calculating coefficients that allow one to summarize agreements in a single score. The second approach involves estimating log-linear models that allow one to test specific hypotheses about the structure of a cross-classification of two or more raters' judgments. The third approach explores cross-classifications or raters' agreement for indicators of agreement or disagreement, and for indicators of such characteristics as trends. The fourth approach compares the correlation or covariation structures of variables that raters use to describe objects, behaviors, or individuals. These structures can be compared for two or more raters. All of these methods operate at the level of observed variables. This book is intended as a reference for researchers and practitioners who describe and evaluate objects and behavior in a number of fields, including the social and behavioral sciences, statistics, medicine, business, and education. It also serves as a useful text for graduate-level methods or assessment classes found in departments of psychology, education, epidemiology, biostatistics, public health, communication, advertising and marketing, and sociology. Exposure to regression analysis and log-linear modeling is helpful.
An easily accessible introduction to log-linear modeling for non-statisticians Highlighting advances that have lent to the topic's distinct, coherent methodology over the past decade, Log-Linear Modeling: Concepts, Interpretation, and Application provides an essential, introductory treatment of the subject, featuring many new and advanced log-linear methods, models, and applications. The book begins with basic coverage of categorical data, and goes on to describe the basics of hierarchical log-linear models as well as decomposing effects in cross-classifications and goodness-of-fit tests. Additional topics include: The generalized linear model (GLM) along with popular methods of coding such as effect coding and dummy coding Parameter interpretation and how to ensure that the parameters reflect the hypotheses being studied Symmetry, rater agreement, homogeneity of association, logistic regression, and reduced designs models Throughout the book, real-world data illustrate the application of models and understanding of the related results. In addition, each chapter utilizes R, SYSTAT®, and §¤EM software, providing readers with an understanding of these programs in the context of hierarchical log-linear modeling. Log-Linear Modeling is an excellent book for courses on categorical data analysis at the upper-undergraduate and graduate levels. It also serves as an excellent reference for applied researchers in virtually any area of study, from medicine and statistics to the social sciences, who analyze empirical data in their everyday work.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.