Filling the need for a solid textbook, this short primer in cluster science is ideal for a one-semester lecture for advanced undergraduate students. It is based on a series of lectures given by the well-established and recognized authors for the past ten years. The book covers both the basics of the domain as well as up-to-date developments. It can be divided roughly into two parts. The first three chapters introduce basic concepts of cluster science. Chapter 1 provides a general introduction, complemented by chapter 2 on experimental and chapter 3 on theoretical aspects. The second half of the book is devoted to a systematic presentation of free cluster properties, and to a thorough discussion of the impact of clusters in other domains of science. These explicitly worked-out links between cluster physics and other research areas are unique both in terms of fundamental aspects and of applications, and cannot be found elsewhere in the literature. Also suitable for researchers outside of the field looking for an introduction to cluster science.
This practical book presents an overview of the various approaches developed to understand the dynamics of electronic systems in physics and chemistry. It also illustrates typical application examples, namely atoms, molecules, and clusters such as nano objects. For each system, the book reviews its key features and concepts and also provides a wider perspective on other physical systems such as atomic nuclei and quantum dots. There exist a large number of theories adapted to specific physical situations (both in space and time), but there is not yet a common theory for all possible dynamical scenarios. This book provides a general perspective on the topic, supplying the reader with a guidebook to navigate the wide spectrum of approaches. It provides an overview of available theories to address various problems in the irradiation of finite systems, discussing the possibilities and limitations of the available theories to help readers understand the applicability of a given theory or set of theories to address a given physical problem or chemical situation. It is an ideal guide for graduate students and researchers in physics and chemistry. Key Features: • Presents a critical survey of available theoretical tools to help readers choose the appropriate method or approach for any given physical situations • Accessible, with an emphasis on avoiding details of formal and technical difficulties • Provides a guided tour based on typical examples starting from the actual physical situation down to actual tools to be used to describe it Jorge José Kohanoff is a Professor of Computational Chemical Physics at Queen’s University Belfast, Ireland. Paul-Gerhard Reinhard is a Professor at the Institute for Theoretical Physics at the University of Erlangen-Nuremberg, Germany. Lorenzo Stella is Senior Lecturer in the Centre for Laser-Matter Interactions (CLMI) at the Queen’s University Belfast, United Kingdom. Eric Suraud is a Distinguished Professor at Paul Sabatier University, France.
Clusters as mesoscopic particles represent an intermediate state of matter between single atoms and solid material. The tendency to miniaturise technical objects requires knowledge about systems which contain a "small" number of atoms or molecules only. This is all the more true for dynamical aspects, particularly in relation to the qick development of laser technology and femtosecond spectroscopy. Here, for the first time is a highly qualitative introduction to cluster physics. With its emphasis on cluster dynamics, this will be vital to everyone involved in this interdisciplinary subject. The authors cover the dynamics of clusters on a broad level, including recent developments of femtosecond laser spectroscopy on the one hand and time-dependent density functional theory calculations on the other.
The term “ nite Fermi systems” usually refers to systems where the fermionic nature of the constituents is of dominating importance but the nite spatial extent also cannot be ignored. Historically the prominent examples were atoms, molecules, and nuclei. These should be seen in contrast to solid-state systems, where an in nite extent is usually a good approximation. Recently, new and different types of nite Fermi systems have become important, most noticeably metallic clusters, quantum dots, fermion traps, and compact stars. The theoretical description of nite Fermi systems has a long tradition and dev- oped over decades from most simple models to highly elaborate methods of ma- body theory. In fact, nite Fermi systems are the most demanding ground for theory as one often does not have any symmetry to simplify classi cation and as a possibly large but always nite particle number requires to take into account all particles. In spite of the practical complexity, most methods rely on simple and basic schemes which can be well understood in simple test cases. We therefore felt it a timely undertaking to offer a comprehensive view of the underlying theoretical ideas and techniques used for the description of such s- tems across physical disciplines. The book demonstrates how theoretical can be successively re ned from the Fermi gas via external potential and mean- eld m- els to various techniques for dealing with residual interactions, while following the universality of such concepts like shells and magic numbers across the application elds.
Filling the need for a solid textbook, this short primer in cluster science is ideal for a one-semester lecture for advanced undergraduate students. It is based on a series of lectures given by the well-established and recognized authors for the past ten years. The book covers both the basics of the domain as well as up-to-date developments. It can be divided roughly into two parts. The first three chapters introduce basic concepts of cluster science. Chapter 1 provides a general introduction, complemented by chapter 2 on experimental and chapter 3 on theoretical aspects. The second half of the book is devoted to a systematic presentation of free cluster properties, and to a thorough discussion of the impact of clusters in other domains of science. These explicitly worked-out links between cluster physics and other research areas are unique both in terms of fundamental aspects and of applications, and cannot be found elsewhere in the literature. Also suitable for researchers outside of the field looking for an introduction to cluster science.
Clusters as mesoscopic particles represent an intermediate state of matter between single atoms and solid material. The tendency to miniaturise technical objects requires knowledge about systems which contain a "small" number of atoms or molecules only. This is all the more true for dynamical aspects, particularly in relation to the qick development of laser technology and femtosecond spectroscopy. Here, for the first time is a highly qualitative introduction to cluster physics. With its emphasis on cluster dynamics, this will be vital to everyone involved in this interdisciplinary subject. The authors cover the dynamics of clusters on a broad level, including recent developments of femtosecond laser spectroscopy on the one hand and time-dependent density functional theory calculations on the other.
This practical book presents an overview of the various approaches developed to understand the dynamics of electronic systems in physics and chemistry. It also illustrates typical application examples, namely atoms, molecules, and clusters such as nano objects. For each system, the book reviews its key features and concepts and also provides a wider perspective on other physical systems such as atomic nuclei and quantum dots. There exist a large number of theories adapted to specific physical situations (both in space and time), but there is not yet a common theory for all possible dynamical scenarios. This book provides a general perspective on the topic, supplying the reader with a guidebook to navigate the wide spectrum of approaches. It provides an overview of available theories to address various problems in the irradiation of finite systems, discussing the possibilities and limitations of the available theories to help readers understand the applicability of a given theory or set of theories to address a given physical problem or chemical situation. It is an ideal guide for graduate students and researchers in physics and chemistry. Key Features: Presents a critical survey of available theoretical tools to help readers choose the appropriate method or approach for any given physical situations Accessible, with an emphasis on avoiding details of formal and technical difficulties Provides a guided tour based on typical examples starting from the actual physical situation down to actual tools to be used to describe it
The term “ nite Fermi systems” usually refers to systems where the fermionic nature of the constituents is of dominating importance but the nite spatial extent also cannot be ignored. Historically the prominent examples were atoms, molecules, and nuclei. These should be seen in contrast to solid-state systems, where an in nite extent is usually a good approximation. Recently, new and different types of nite Fermi systems have become important, most noticeably metallic clusters, quantum dots, fermion traps, and compact stars. The theoretical description of nite Fermi systems has a long tradition and dev- oped over decades from most simple models to highly elaborate methods of ma- body theory. In fact, nite Fermi systems are the most demanding ground for theory as one often does not have any symmetry to simplify classi cation and as a possibly large but always nite particle number requires to take into account all particles. In spite of the practical complexity, most methods rely on simple and basic schemes which can be well understood in simple test cases. We therefore felt it a timely undertaking to offer a comprehensive view of the underlying theoretical ideas and techniques used for the description of such s- tems across physical disciplines. The book demonstrates how theoretical can be successively re ned from the Fermi gas via external potential and mean- eld m- els to various techniques for dealing with residual interactions, while following the universality of such concepts like shells and magic numbers across the application elds.
Over the last decade one of the most active areas of research in nuclear physics has been the study of systems of nucleons in various dynamical situations. Heavy-ion collisions at beam energies in the range 30-150 MeV per nucleon, where subnucleaonic degrees of freedom can be considered as frozen, allow such systems to be studied in detail. Nuclear Dynamics in the Nucleonic Regime summarizes our current understanding of this branch of physics. The authors follow the course of typical heavy-ion collisions through time and discuss each stage of the collisions. By presenting experimental and theoretical understanding, a clear picture of the physics can be presented.
Praised by reviewers for clarity, presentation and general concept of teaching, "Simple Models of Many Fermion Systems: With Fortran Codes" provides an undergraduate-accessible route to understanding many-particle systems. The book explains how to develop simplified and generic models enabling the reader to understand the principles and mechanisms, rather than just listing the relevant formulae. Complementing numerical tools help to understand and follow the course, and also meet the need for incorporation of computational physics in modern texts.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.