Wetting: Theory and Experiments collates papers published by Professor Eli Ruckenstein and his coworkers on the theoretical and experimental investigation of wetting of solid surfaces. It contains six chapters, each of which is preceded by a short introduction. The papers are selected according to the specific features being considered and they are arranged in logical rather than chronological order. The book focuses on wetting on the nanoscale (nanodrops on solid surfaces, liquid in the nanoslit) considered on the basis of microscopic density functional theory and to dynamics of fluid on the solid surface considered on the basis of hydrodynamic equations. Along with this, experimental studies of wetting related to various applications are presented.
Wetting Experiments contains experimental wetting studies related to biological problems, polymers, and catalysts. An understanding of wetting is important for numerous practical applications, such as preparing self-cleaning surfaces, manufacturing artificial blood vessels, and developing new lubricants and nonadhesive dishes. As part of Wetting: Theory and Experiments, Two-Volume Set, this volume provides new insights into wetting experiments and fills a need not addressed by other books. Biology-related studies are devoted to the problem synthetic materials selection for use in biological media. Polymers are examined to estimate various surface characteristics, such as the ability of polymeric solids to alter their surface structures between different environments to minimize their interfacial free energy. Aimed at engineers, physical scientists, and materials scientists, this volume addresses the key areas of wetting, providing insights valuable to the field.
This book consists of a number of papers regarding the thermodynamics and structure of multicomponent systems that we have published during the last decade. Even though they involve different topics and different systems, they have something in common which can be considered as the “signature” of the present book. First, these papers are concerned with “difficult” or very nonideal systems, i. e. systems with very strong interactions (e. g. , hyd- gen bonding) between components or systems with large differences in the partial molar v- umes of the components (e. g. , the aqueous solutions of proteins), or systems that are far from “normal” conditions (e. g. , critical or near-critical mixtures). Second, the conventional th- modynamic methods are not sufficient for the accurate treatment of these mixtures. Last but not least, these systems are of interest for the pharmaceutical, biomedical, and related ind- tries. In order to meet the thermodynamic challenges involved in these complex mixtures, we employed a variety of traditional methods but also new methods, such as the fluctuation t- ory of Kirkwood and Buff and ab initio quantum mechanical techniques. The Kirkwood-Buff (KB) theory is a rigorous formalism which is free of any of the - proximations usually used in the thermodynamic treatment of multicomponent systems. This theory appears to be very fruitful when applied to the above mentioned “difficult” systems.
Nanomaterial science has received increasing attention over the last twenty years. As more and more applications are discovered in medical sciences, physics, chemistry, polymer science, material science and engineering, there is a growing need for a basic understanding of nanoparticle interactions and their role in the thermodynamic and kinetic stability of nanodispersions. "Nanodispersions: Interactions, Stability and Dynamics" collects research in nanodispersion interactions and stability by the distinguished Eli Ruckenstein and his research group at SUNY-Buffalo. This book provides valuable insight into current investigations of nanotechnology.
Wetting Theory discusses the numerous practical applications of wetting, such as preparing self-cleaning surfaces, manufacturing artificial blood vessels, and developing new lubricants and nonadhesive dishes. As part of Wetting: Theory and Experiments, Two-Volume Set, thisvolume provides new, critical insights into the theory of wetting. Chapters are arranged to allow readers to follow the development of a suggested approach (static and dynamic properties of wetting) and how these tools are applied to specific problems. Main attention is given to nanoscale wetting (nanodrops on solid surfaces, liquid in the nanoslit) on the basis of microscopic density functional theory and fluid dynamics on solid surfaces on the basis of hydrodynamic equations. Aimed at engineers, physical scientists, and materials scientists, this volume addresses the key areas of wetting, providing invaluable insights to the field.
Explore a Kinetic Approach to the Description of Nucleation - An Alternative to the Classical Nucleation TheoryKinetic Theory of Nucleation presents an alternative to the classical theory of nucleation in gases and liquids-the kinetic nucleation theory of Ruckenstein-Narsimhan-Nowakowski (RNNT). RNNT uses the kinetic theory of fluids to calculate t
Wetting: Theory and Experiments collates papers published by Professor Eli Ruckenstein and his coworkers on the theoretical and experimental investigation of wetting of solid surfaces. It contains six chapters, each of which is preceded by a short introduction. The papers are selected according to the specific features being considered and they are arranged in logical rather than chronological order. The book focuses on wetting on the nanoscale (nanodrops on solid surfaces, liquid in the nanoslit) considered on the basis of microscopic density functional theory and to dynamics of fluid on the solid surface considered on the basis of hydrodynamic equations. Along with this, experimental studies of wetting related to various applications are presented.
Wetting Experiments contains experimental wetting studies related to biological problems, polymers, and catalysts. An understanding of wetting is important for numerous practical applications, such as preparing self-cleaning surfaces, manufacturing artificial blood vessels, and developing new lubricants and nonadhesive dishes. As part of Wetting: Theory and Experiments, Two-Volume Set, this volume provides new insights into wetting experiments and fills a need not addressed by other books. Biology-related studies are devoted to the problem synthetic materials selection for use in biological media. Polymers are examined to estimate various surface characteristics, such as the ability of polymeric solids to alter their surface structures between different environments to minimize their interfacial free energy. Aimed at engineers, physical scientists, and materials scientists, this volume addresses the key areas of wetting, providing insights valuable to the field.
Wetting Theory discusses the numerous practical applications of wetting, such as preparing self-cleaning surfaces, manufacturing artificial blood vessels, and developing new lubricants and nonadhesive dishes. As part of Wetting: Theory and Experiments, Two-Volume Set, thisvolume provides new, critical insights into the theory of wetting. Chapters are arranged to allow readers to follow the development of a suggested approach (static and dynamic properties of wetting) and how these tools are applied to specific problems. Main attention is given to nanoscale wetting (nanodrops on solid surfaces, liquid in the nanoslit) on the basis of microscopic density functional theory and fluid dynamics on solid surfaces on the basis of hydrodynamic equations. Aimed at engineers, physical scientists, and materials scientists, this volume addresses the key areas of wetting, providing invaluable insights to the field.
Comprising one volume of Functional and Modified Polymeric Materials, Two-Volume Set, this curated collection of papers by Professor Eli Ruckenstein and co-workers discusses the merits of concentrated emulsion polymerization systems, as well as their ability to yield a broad variety of products with high synthetic efficiency. Comprised of carefully curated chapters previously published by these pioneering scientists in the field, this volume offers a comprehensive view of the subject and presents functional and modified polymeric materials prepared by concentrated emulsion polymerization approaches. It covers conductive polymer composites, core-shell latex particles, enzyme/catalyst carriers, and plastics toughening and compatibilization polymerization. The authors have performed seminal studies on the preparation of functional and modified polymeric materials via concentrated emulsion polymerization. The corresponding research papers, after further selection and classification, are collected in the four chapters of this book.
Explore a Kinetic Approach to the Description of Nucleation - An Alternative to the Classical Nucleation TheoryKinetic Theory of Nucleation presents an alternative to the classical theory of nucleation in gases and liquids-the kinetic nucleation theory of Ruckenstein-Narsimhan-Nowakowski (RNNT). RNNT uses the kinetic theory of fluids to calculate t
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.