At the interface between chemistry, biology, and physics, fullerenes were one of the first objects to be dissected, scanned, and studied by the modern multi-specialty biotech community and are currently thriving in both research and practical application. Other members of the sp2 nanocarbon family, such as nanotubes and graphene, are currently bein
Graphene’s nickname ‘miracle material’ normally means the material superior properties. However, all these characteristics are only the outward manifestation of the wonderful nature of graphene. The real miracle of graphene is that the specie is a union of two entities: a physical - and a chemical one, each of which is unique in its own way. The book concerns a very close interrelationship between graphene physics and chemistry as expressed via typical spin effects of a chemical physics origin. Based on quantum-chemical computations, the book is nevertheless addressed to the reflection of physical reality and it is aimed at an understanding of what constitutes graphene as an object of material science – sci graphene – on the one hand, and as a working material- high tech graphene - for a variety of attractive applications largely discussed and debated in the press, on the other. The book is written by a user of quantum chemistry, sufficiently experienced in material science, and the chemical physics of graphene is presented as the user view based on results of extended computational experiments in tight connection with their relevance to physical and chemical realities. The experiments have been carried out at the same theoretical platform, which allows considering different sides of the graphene life at the same level in light of its chemical peculiarity.
Low-temperature spectroscopy of organic molecular crystals came into being in the late 20s, just when quantum physics of solids as a whole began to de velop vigorously. Already in the early works, two experimental facts of prime importance were discovered: the presence of a multitude of narrow bands in the low-temperature spectrum of a crystal, and a close relationship between the spectrum of the crystal and that of the constituent molecules. These findings immediately preceded the celebrated paper of Frenkel in which he went beyond the framework of Bloch's scheme and advanced the exciton concept. Subsequent investigations showed that the most interesting features of the spectra of molecular crystals are associated with excitons, and then the spectroscopy of molecular excitons began to form gradually on the basis of the spectroscopy of organic crystals. The molecular exciton became synonymous to the Frenkel exciton in a molecular crystal. In view of the difficulties involved in the analysis of rich spectra con taining many tens of bands, the spectroscopy of molecular crystals had long been connected most closely with the spectroscopy of molecules. It had deve loped independently, to a large extent, from the other branches of solid state physics. This was also emphasized by the difference in experimental techniques, the specific properties of the objects, etc. As a result, there was some lag in ideas and concepts.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.