A graduate-level textbook on the astrophysics of binary star systems and their evolution Physics of Binary Star Evolution is an up-to-date textbook on the astrophysics and evolution of binary star systems. Theoretical astrophysicists Thomas Tauris and Edward van den Heuvel cover a wide range of phenomena and processes, including mass transfer and ejection, common envelopes, novae and supernovae, X-ray binaries, millisecond radio pulsars, and gravitational wave (GW) sources, and their links to stellar evolution. The authors walk through the observed properties and evolution of different types of binaries, with special emphasis on those containing compact objects (neutron stars, black holes, and white dwarfs). Attention is given to the formation mechanisms of GW sources—merging double neutron stars and black holes as well as ultra-compact GW binaries hosting white dwarfs—and to the progenitors of these sources and how they are observed with radio telescopes, X-ray satellites, and GW detectors (LIGO, Virgo, KAGRA, Einstein Telescope, Cosmic Explorer, and LISA). Supported by illustrations, equations, and exercises, Physics of Binary Star Evolution combines theory and observations to guide readers through the wonders of a field that will play a central role in modern astrophysics for decades to come. 465 equations, 47 tables, and 350+ figures More than 80 exercises (analytical, numerical, and computational) Over 2,500 extensive, up-to-date references
How humans and technology evolve together in a creative partnership. In this book, Edward Ashford Lee makes a bold claim: that the creators of digital technology have an unsurpassed medium for creativity. Technology has advanced to the point where progress seems limited not by physical constraints but the human imagination. Writing for both literate technologists and numerate humanists, Lee makes a case for engineering—creating technology—as a deeply intellectual and fundamentally creative process. Explaining why digital technology has been so transformative and so liberating, Lee argues that the real power of technology stems from its partnership with humans. Lee explores the ways that engineers use models and abstraction to build inventive artificial worlds and to give us things that we never dreamed of—for example, the ability to carry in our pockets everything humans have ever published. But he also attempts to counter the runaway enthusiasm of some technology boosters who claim everything in the physical world is a computation—that even such complex phenomena as human cognition are software operating on digital data. Lee argues that the evidence for this is weak, and the likelihood that nature has limited itself to processes that conform to today's notion of digital computation is remote. Lee goes on to argue that artificial intelligence's goal of reproducing human cognitive functions in computers vastly underestimates the potential of computers. In his view, technology is coevolving with humans. It augments our cognitive and physical capabilities while we nurture, develop, and propagate the technology itself. Complementarity is more likely than competition.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.