Analog circuit design is often the bottleneck when designing mixed analog-digital systems. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits presents a new methodology based on a top-down, constraint-driven design paradigm that provides a solution to this problem. This methodology has two principal advantages: (1) it provides a high probability for the first silicon which meets all specifications, and (2) it shortens the design cycle. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits is part of an ongoing research effort at the University of California at Berkeley in the Electrical Engineering and Computer Sciences Department. Many faculty and students, past and present, are working on this design methodology and its supporting tools. The principal goals are: (1) developing the design methodology, (2) developing and applying new tools, and (3) `proving' the methodology by undertaking `industrial strength' design examples. The work presented here is neither a beginning nor an end in the development of a complete top-down, constraint-driven design methodology, but rather a step in its development. This work is divided into three parts. Chapter 2 presents the design methodology along with foundation material. Chapters 3-8 describe supporting concepts for the methodology, from behavioral simulation and modeling to circuit module generators. Finally, Chapters 9-11 illustrate the methodology in detail by presenting the entire design cycle through three large-scale examples. These include the design of a current source D/A converter, a Sigma-Delta A/D converter, and a video driver system. Chapter 12 presents conclusions and current research topics. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits will be of interest to analog and mixed-signal designers as well as CAD tool developers.
In the past decade, substrate noise has had a constant and significant impact on the design of analog and mixed-signal integrated circuits. Only recently, with advances in chip miniaturization and innovative circuit design, has substrate noise begun to plague fully digital circuits as well. To combat the effects of substrate noise, heavily over-designed structures are generally adopted, thus seriously limiting the advantages of innovative technologies. Substrate Noise: Analysis and Optimization for IC Design addresses the main problems posed by substrate noise from both an IC and a CAD designer perspective. The effects of substrate noise on performance in digital, analog, and mixed-signal circuits are presented, along with the mechanisms underlying noise generation, injection, and transport. Popular solutions to the substrate noise problem and the trade-offs often debated by designers are extensively discussed. Non-traditional approaches as well as semi-automated techniques to combat substrate noise are also addressed. Substrate Noise: Analysis and Optimization for IC Design will be of interest to researchers and professionals interested in signal integrity, as well as to mixed signal and RF designers.
In the past decade, substrate noise has had a constant and significant impact on the design of analog and mixed-signal integrated circuits. Only recently, with advances in chip miniaturization and innovative circuit design, has substrate noise begun to plague fully digital circuits as well. To combat the effects of substrate noise, heavily over-designed structures are generally adopted, thus seriously limiting the advantages of innovative technologies. Substrate Noise: Analysis and Optimization for IC Design addresses the main problems posed by substrate noise from both an IC and a CAD designer perspective. The effects of substrate noise on performance in digital, analog, and mixed-signal circuits are presented, along with the mechanisms underlying noise generation, injection, and transport. Popular solutions to the substrate noise problem and the trade-offs often debated by designers are extensively discussed. Non-traditional approaches as well as semi-automated techniques to combat substrate noise are also addressed. Substrate Noise: Analysis and Optimization for IC Design will be of interest to researchers and professionals interested in signal integrity, as well as to mixed signal and RF designers.
Analog circuit design is often the bottleneck when designing mixed analog-digital systems. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits presents a new methodology based on a top-down, constraint-driven design paradigm that provides a solution to this problem. This methodology has two principal advantages: (1) it provides a high probability for the first silicon which meets all specifications, and (2) it shortens the design cycle. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits is part of an ongoing research effort at the University of California at Berkeley in the Electrical Engineering and Computer Sciences Department. Many faculty and students, past and present, are working on this design methodology and its supporting tools. The principal goals are: (1) developing the design methodology, (2) developing and applying new tools, and (3) `proving' the methodology by undertaking `industrial strength' design examples. The work presented here is neither a beginning nor an end in the development of a complete top-down, constraint-driven design methodology, but rather a step in its development. This work is divided into three parts. Chapter 2 presents the design methodology along with foundation material. Chapters 3-8 describe supporting concepts for the methodology, from behavioral simulation and modeling to circuit module generators. Finally, Chapters 9-11 illustrate the methodology in detail by presenting the entire design cycle through three large-scale examples. These include the design of a current source D/A converter, a Sigma-Delta A/D converter, and a video driver system. Chapter 12 presents conclusions and current research topics. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits will be of interest to analog and mixed-signal designers as well as CAD tool developers.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.