Close to one-half of all Americans live in coastal counties. The resulting flood of wastewater, stormwater, and pollutants discharged into coastal waters is a major concern. This book offers a well-delineated approach to integrated coastal management beginning with wastewater and stormwater control. The committee presents an overview of current management practices and problems. The core of the volume is a detailed model for integrated coastal management, offering basic principles and methods, a direction for moving from general concerns to day-to-day activities, specific steps from goal setting through monitoring performance, and a base of scientific and technical information. Success stories from the Chesapeake and Santa Monica bays are included. The volume discusses potential barriers to integrated coastal management and how they may be overcome and suggests steps for introducing this concept into current programs and legislation. This practical volume will be important to anyone concerned about management of coastal waters: policymakers, resource and municipal managers, environmental professionals, concerned community groups, and researchers, as well as faculty and students in environmental studies.
The report reviews a comprehensive research plan on Everglades restoration drafted by federal and Florida officials that assesses a central feature of the restoration: a proposal to drill more than 300 wells funneling up to 1.7 billion gallons of water a day into underground aquifers, where it would be stored and then pumped back to the surface to replenish the Everglades during dry periods. The report says that the research plan goes a long way to providing information needed to settle remaining technical questions and clearly responds to suggestions offered by scientists in Florida and in a previous report by the Research Council.
Near Earth objects (NEOs) have the potential to cause significant damage on Earth. In December 2018, an asteroid exploded in the upper atmosphere over the Bering Sea (western Pacific Ocean) with the explosive force of nearly 10 times that of the Hiroshima bomb. While the frequency of NEO impacts rises in inverse proportion to their sizes, it is still critical to monitor NEO activity in order to prepare defenses for these rare but dangerous threats. Currently, NASA funds a network of ground-based telescopes and a single, soon-to-expire space-based asset to detect and track large asteroids that could cause major damage if they struck Earth. This asset is crucial to NEO tracking as thermal-infrared detection and tracking of asteroids can only be accomplished on a space-based platform. Finding Hazardous Asteroids Using Infrared and Visible Wavelength Telescopes explores the advantages and disadvantages of infrared (IR) technology and visible wavelength observations of NEOs. This report reviews the techniques that could be used to obtain NEO sizes from an infrared spectrum and delineate the associated errors in determining the size. It also evaluates the strengths and weaknesses of these techniques and recommends the most valid techniques that give reproducible results with quantifiable errors.
The U.S. Climate Change Science Program is in the process of producing 21 draft assessments that investigate changes in the Earth's climate and related systems. These assessments are designed to inform decisionmakers about the scientific underpinnings of a range of environmental issues, such as stratospheric ozone. This National Research Council report reviews one of these assessments, Synthesis and Assessment Product (SAP) 2.4, Trends in Emissions of Ozone Depletion Substances, Ozone Layer Recovery, and Implications for Ultraviolet Radiation Exposure. This assessment is noted as being the first-ever attempt to look at the United States contribution to ozone-depleting substances and ozone recovery. This National Research Council book commends the assessment's authoring team for comprehensively covering the scientific basis of ozone and ozone-depleting substances, but recommends several ways that the assessment could be improved. Suggestions include clarifying the discussion on climate effects of ozone and revising the approach to estimating U.S. contributions to production, consumption, and emission of ozone-depleting substances. The assessment could also be improved by reorganizing and editing to accommodate intended audiences.
Lead is a ubiquitous metal in the environment, and its adverse effects on human health are well documented. Lead interacts at multiple cellular sites and can alter protein function in part through binding to amino acid sulfhydryl and carboxyl groups on a wide variety of structural and functional proteins. In addition, lead mimics calcium and other divalent cations, and it induces the increased production of cytotoxic reactive oxygen species. Adverse effects associated with lead exposure can be observed in multiple body systems, including the nervous, cardiovascular, renal, hematologic, immunologic, and reproductive systems. Lead exposure is also known to induce adverse developmental effects in utero and in the developing neonate. Lead poses an occupational health hazard, and the Occupational Safety and Health Administration (OSHA) developed a lead standard for general industry that regulates many workplace exposures to this metal. The standard was promulgated in 1978 and encompasses several approaches for reducing exposure to lead, including the establishment of a permissible exposure limit (PEL) of 50 μg/m3 in air (an 8-hour time-weighted average [TWA]), exposure guidelines for instituting medical surveillance, guidelines for removal from and return to work, and other risk-management strategies. An action level of 30 μg/m3 (an 8-hour TWA) for lead was established to trigger medical surveillance in employees exposed above that level for more than 30 days per year. Another provision is that any employee who has a blood lead level (BLL) of 60 μg/dL or higher or three consecutive BLLs averaging 50 μg/dL or higher must be removed from work involving lead exposure. An employee may resume work associated with lead exposure only after two BLLs are lower than 40 μg/dL. Thus, maintaining BLLs lower than 40 μg/dL was judged by OSHA to protect workers from adverse health effects. The OSHA standard also includes a recommendation that BLLs of workers who are planning a pregnancy be under 30μg/dL. In light of knowledge about the hazards posed by occupational lead exposure, the Department of Defense (DOD) asked the National Research Council to evaluate potential health risks from recurrent lead exposure of firing-range personnel. Specifically, DOD asked the National Research Council to determine whether current exposure standards for lead on DOD firing ranges protect its workers adequately.The committee also considered measures of cumulative lead dose. Potential Health Risks to DOD Firing-Range Personnel from Recurrent Lead Exposure will help to inform decisions about setting new air exposure limits for lead on firing ranges, about whether to implement limits for surface contamination, and about how to design lead-surveillance programs for range personnel appropriately.
The U.S. Army Corps of Engineers (the Corps) has played a large and important role in shaping water resources systems in the United States since Congress first tasked it in 1824 to improve navigation on the Ohio and Mississippi Rivers. Since then, rivers have been modified for navigation and flood control, harbors have been dredged for shipping, and coastlines are routinely fortified against erosion and beach loss. Recent decades have seen an overall decline in budgets for civil works project construction, yet the range of objectives for water resources projects has broadened as society places more value on environmental and recreational benefits. Thus, the Corps' portfolio of water resources projects has changed considerably. There is a reduced emphasis on traditional construction projects and an increased focus on maintenance and reoperation of existing projects such as locks, dams, and levees and on environmental restoration projects. An integrated approach to water resources planning at the scale of river basins and coastal systems is widely endorsed by the academic and engineering communities. The Corps' mission, expertise, and experience give it immense potential to alter the structure and functioning of the nation's waterways and coasts. As might be expected in a large and complex organization answering to a range of public and private demands, implementation of these new policies and objectives is neither consistent nor complete. River Basins and Coastal Systems Planning within the U.S. Army Corps of Engineers recommends improvements in the Corps' water resource project planning and review process. This report compares economic and environmental benefits and costs over a range of time and space scales, suggests multiple purpose formulation and evaluation methods, and recommends integration of water development plans with other projects in the region.
Protecting and maintaining water distributions systems is crucial to ensuring high quality drinking water. Distribution systems-consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances-carry drinking water from a centralized treatment plant or well supplies to consumers' taps. Spanning almost 1 million miles in the United States, distribution systems represent the vast majority of physical infrastructure for water supplies, and thus constitute the primary management challenge from both an operational and public health standpoint. Recent data on waterborne disease outbreaks suggest that distribution systems remain a source of contamination that has yet to be fully addressed. This report evaluates approaches for risk characterization and recent data, and it identifies a variety of strategies that could be considered to reduce the risks posed by water-quality deteriorating events in distribution systems. Particular attention is given to backflow events via cross connections, the potential for contamination of the distribution system during construction and repair activities, maintenance of storage facilities, and the role of premise plumbing in public health risk. The report also identifies advances in detection, monitoring and modeling, analytical methods, and research and development opportunities that will enable the water supply industry to further reduce risks associated with drinking water distribution systems.
What can we expect as global change progresses? Will there be thresholds that trigger sudden shifts in environmental conditionsâ€"or that cause catastrophic destruction of life? Effects of Past Global Change on Life explores what earth scientists are learning about the impact of large-scale environmental changes on ancient lifeâ€"and how these findings may help us resolve today's environmental controversies. Leading authorities discuss historical climate trends and what can be learned from the mass extinctions and other critical periods about the rise and fall of plant and animal species in response to global change. The volume develops a picture of how environmental change has closed some evolutionary doors while opening othersâ€"including profound effects on the early members of the human family. An expert panel offers specific recommendations on expanding research and improving investigative toolsâ€"and targets historical periods and geological and biological patterns with the most promise of shedding light on future developments. This readable and informative book will be of special interest to professionals in the earth sciences and the environmental community as well as concerned policymakers.
The number of hazardous waste sites across the United States has grown to approximately 217,000, with billions of cubic yards of soil, sediment, and groundwater plumes requiring remediation. Sites contaminated with recalcitrant contaminants or with complex hydrogeological features have proved to be a significant challenge to cleanup on every levelâ€"technologically, financially, legally, and sociopolitically. Like many federal agencies, the Navy is a responsible party with a large liability in hazardous waste sites. Environmental Cleanup at Navy Facilitites applies the concepts of adaptive management to complex, high-risk hazardous waste sites that are typical of the military, EPA, and other responsible parties. The report suggests ways to make forward progress at sites with recalcitrant contamination that have stalled prior to meeting cleanup goals. This encompasses more rigorous data collection and analysis, consideration of alternative treatment technologies, and comprehensive long-term stewardship.
The Bureau of Reclamation and Sandia National Laboratories jointly developed the Roadmap to serve as a strategic research pathway for desalination and water purification technologies to meet future water needs. The book recommends that the Roadmap include a sharper focus on the research and technological advancements needed to reach the long-term objectives. The book also suggests that the environmental, economic, and social costs of energy required by increased dependence on desalination be examined. Strategies for implementing the Roadmap initiative are provided.
Across the United States, the practices for collecting water use data vary significantly from state to state and vary also from one water use category to another, in response to the laws regulating water use and interest in water use data as an input for water management. However, many rich bodies of water use data exist at the state level, and an outstanding opportunity exists for assembling and statistically analyzing these data at the national level. This would lead to better techniques for water use estimation and to a greater capacity to link water use with its impact on water resources. This report is a product of the Committee on Water Resources Research, which provides consensus advice to the Water Resources Division (WRD) of the USGS on scientific, research, and programmatic issues. The committee works under the auspices of the Water Science and Technology Board of the National Research Council (NRC). The committee considers a variety of topics that are important scientifically and programmatically to the USGS and the nation and issues reports when appropriate. This report concerns the National Water-Use Information Program (NWUIP).
The United States spends approximately $4 million each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.
Injury is a public health problem whose toll is unacceptable," claims this book from the Committee on Trauma Research. Although injuries kill more Americans from 1 to 34 years old than all diseases combined, little is spent on prevention and treatment research. In addition, between $75 billion and $100 billion each year is spent on injury-related health costs. Not only does the book provide a comprehensive survey of what is known about injuries, it suggests there is a vast need to know more. Injury in America traces findings on the epidemiology of injuries, prevention of injuries, injury biomechanics and the prevention of impact injury, treatment, rehabilitation, and administration of injury research.
Of all the outputs of forests, water may be the most important. Streamflow from forests provides two-thirds of the nation's clean water supply. Removing forest cover accelerates the rate that precipitation becomes streamflow; therefore, in some areas, cutting trees causes a temporary increase in the volume of water flowing downstream. This effect has spurred political pressure to cut trees to increase water supply, especially in western states where population is rising. However, cutting trees for water gains is not sustainable: increases in flow rate and volume are typically short-lived, and the practice can ultimately degrade water quality and increase vulnerability to flooding. Forest hydrology, the study of how water flows through forests, can help illuminate the connections between forests and water, but it must advance if it is to deal with today's complexities, including climate change, wildfires, and changing patterns of development and ownership. This book identifies actions that scientists, forest and water managers, and citizens can take to help sustain water resources from forests.
Water is essential to life for humans and their food crops, and for ecosystems. Effective water management requires tracking the inflow, outflow, quantity and quality of ground-water and surface water, much like balancing a bank account. Currently, networks of ground-based instruments measure these in individual locations, while airborne and satellite sensors measure them over larger areas. Recent technological innovations offer unprecedented possibilities to integrate space, air, and land observations to advance water science and guide management decisions. This book concludes that in order to realize the potential of integrated data, agencies, universities, and the private sector must work together to develop new kinds of sensors, test them in field studies, and help users to apply this information to real problems.
The Missouri River Ecosystem: Exploring the Prospects for Recovery resulted from a study conducted at the request of the U.S. Environmental Protection Agency and the U.S. Army Corps of Engineers. The nation's longest river, the Missouri River and its floodplain ecosystem experienced substantial environmental and hydrologic changes during the twentieth century. The context of Missouri River dam and reservoir system management is marked by sharp differences between stakeholders regarding the river's proper management regime. The management agencies have been challenged to determine the appropriate balance between these competing interests. This Water Science and Technology Board report reviews the ecological state of the river and floodplain ecosystem, scientific research of the ecosystem, and the prospects for implementing an adaptive management approach, all with a view toward helping move beyond ongoing scientific and other differences. The report notes that continued ecological degradation of the ecosystem is certain unless some portion of pre-settlement river flows and processes were restored. The report also includes recommendations to enhance scientific knowledge through carefully planned and monitored river management actions and the enactment of a Missouri River Protection and Recovery Act.
Since the 1950s,the International Joint Commission (IJC) of Canada and the United States has issued water regulation and management plans for Lake Ontario and the St. Lawrence River. Changes in recreational, environmental, navigational and other uses of the water system have prompted the IJC to consider replacing the current water regulation plan in operation for more than 40 years. IJC's goals for a replacement plan include sound scientific foundations, public participation, transparency in plan development and evaluation, and inclusion of environmental considerations. To help develop and select the new plan, the IJC supported a 5-year, $20 million Lake Ontario-St. Lawrence River Study (LOSLR Study). The LOSLR Study uses models to compile and integrate data gathered from a series of commissioned studies of wetlands, species at risk, recreational boating, fisheries, coastal erosion and flooding, commercial navigation, hydropower, industrial, municipal and domestic water intakes, public information and education, and hydrologic modeling. This report reviews a portion of the study that focused on wetlands and species at risk and three of the models that were used. The report finds that the overall breadth of the LOSLR study is impressive, and commends the scale and inclusiveness of the studies and models. In terms of informing decision making, however, the reviewed studies and models show deficiencies when evaluated against ten evaluation criteria, including treatment of uncertainty, quality control/quality assurance, thorough documentation, and empirical foundations. Among the report's recommendations is a need for more thorough documentation of study methods and findings, stronger and more consistent quality control, and more attention to how uncertainty should be addressed to better inform decision making. This NRC study was conducted in collaboration with the Royal Society of Canada.
For the past few years, the Corps has been working on what is known as the Restructured Upper Mississippi River-Illinois Waterway Feasibility Study, the heart of which is a multibillion-dollar proposal to double the length of up to a dozen locks on the river. The Research Council first reviewed the feasibility study in 2001 during controversies over the accuracy of models being used by the Corps to justify lock expansion based on increased demand for barge transportation. More than 100 million tons of cargo-half of it grain destined for international markets, the other half goods such as construction materials, coal, and chemicals-are shipped along the navigation system each year. The locks, which along with dams allow barges to traverse uneven river depths, were originally designed for "tows" of barges up to 600 feet long, but the length of a typical tow has increased, forcing the Corps to look for ways to relieve congestion. The book finds the U.S. Army Corps of Engineers has made good progress in broadening its proposed plan for navigation improvements on the Upper Mississippi River-Illinois Waterway system to give greater consideration to ecological restoration. However, the plan still does not provide sufficient economic justification for expanding locks on the rivers because of flaws in the models the Corps used to predict demand for barge transportation. Little attention is paid to inexpensive, nonstructural navigation improvements that could help better manage existing levels of barge traffic. The revised plan has been usefully expanded to include many creative and potentially useful ecosystem restoration measures. These measures, however, should be more firmly grounded in river science principles and more broadly consider ways the river's ecology might affect or be affected by navigation, recreation and other uses.
This volume, a collection of seven essays by individuals prominent in the water resources field, commemorates the tenth anniversary of the Water Science and Technology Board. The essays cover a variety of current issues in the field, including intergenerational fairness and water resources, the relationship between policy and science for American rivers, changing values and perceptions in the hydrologic sciences, challenges to water resources decision making, and changing concepts of systems management. An overview of institutions in the field is also given.
Nutrient recycling, habitat for plants and animals, flood control, and water supply are among the many beneficial services provided by aquatic ecosystems. In making decisions about human activities, such as draining a wetland for a housing development, it is essential to consider both the value of the development and the value of the ecosystem services that could be lost. Despite a growing recognition of the importance of ecosystem services, their value is often overlooked in environmental decision-making. This report identifies methods for assigning economic value to ecosystem servicesâ€"even intangible onesâ€"and calls for greater collaboration between ecologists and economists in such efforts.
Emissions from mobile sources contribute significantly to air pollution in the United States. Such sources include cars and light- and heavy-duty trucks; diesel-powered cranes, bulldozers, and tractors; and equipment such as lawnmowers that run on small gasoline engines. The role of state versus federal government in establishing mobile-source emissions standards is an important environmental management issue. With this in mind, Congress called on EPA to arrange an independent study of the practices and procedures by which California develops separate emissions standards from the federal government and other states choose to adopt the California standards. The report provides an assessment of the scientific and technical procedures used by states to develop or adopt different emissions standards and a comparison of those policies and practices with those used by EPA. It also considers the impacts of state emissions standards on various factors including compliance costs and emissions. The report concludes that, despite the substantial progress in reducing emissions from mobile sources nationwide, more needs to be done to attain federal air-quality standards in many parts of the country. Additionally, California should continue its pioneering role in setting emissions standards for cars, trucks, and off-road equipment.
The report examines a draft plan, prepared by the Environmental Protection Agency, that identifies critical security issues for drinking water and wastewater and outlines related research and technical support needs. This report recommends increased attention to interagency coordination and encourages additional consideration of current restrictions on secure information dissemination. It further suggests that EPA incorporate the results of their research activities into an integrated water security guidance document to improve support for water and wastewater utilities.
Public and private institutions are committing resources and making important long-term decisions concerning the collection, management, and use of spatial data. Although these actions are influenced by current pressures, priorities, and opportunities, their ultimate success depends on how these spatial data activities will be relevant to future needs and demands. The Mapping Science Committee, in cooperation with the Federal Geographic Data Committee, convened a workshop in April 1996 to examine societal and technological changes that might occur within the next 15 years. The purpose was to consider within the context of spatial data activities a series of long-term visions and to identify societal forces and changes that would make those visions more or less likely. The workshop provided a framework for thinking about the future of U.S. spatial data activities.
In the quest to reduce costs and improve the efficiency of water and wastewater services, many communities in the United States are exploring the potential advantages of privatization of those services. Unlike other utility services, local governments have generally assumed responsibility for providing water services. Privatization of such services can include the outright sale of system assets, or various forms of public-private partnershipsâ€"from the simple provision of supplies and services, to private design construction and operation of treatment plants and distribution systems. Many factors are contributing to the growing interest in the privatization of water services. Higher operating costs, more stringent federal water quality and waste effluent standards, greater customer demands for quality and reliability, and an aging water delivery and wastewater collection and treatment infrastructure are all challenging municipalities that may be short of funds or technical capabilities. For municipalities with limited capacities to meet these challenges, privatization can be a viable alternative. Privatization of Water Services evaluates the fiscal and policy implications of privatization, scenarios in which privatization works best, and the efficiencies that may be gained by contracting with private water utilities.
The U.S. Geological Survey (USGS) established the National Water Quality Assesment (NAWQA) program in 1985 to assess water quality conditions and trends in representative river basins and aquifers across the United States. With this report, the NRC's Water Science and Technology Board has provided advice to USGS regarding NAWQA five separate times as the program evolved from an unfunded concept to a mature and nationally-recognized program in 2002. This report assesses the program's development and representative accomplishments to date and makes recommendations on opportunities to improve NAWQA as it begins its second decade of nationwide monitoring.
Bioavailability refers to the extent to which humans and ecological receptors are exposed to contaminants in soil or sediment. The concept of bioavailability has recently piqued the interest of the hazardous waste industry as an important consideration in deciding how much waste to clean up. The rationale is that if contaminants in soil and sediment are not bioavailable, then more contaminant mass can be left in place without creating additional risk. A new NRC report notes that the potential for the consideration of bioavailability to influence decision-making is greatest where certain chemical, environmental, and regulatory factors align. The current use of bioavailability in risk assessment and hazardous waste cleanup regulations is demystified, and acceptable tools and models for bioavailability assessment are discussed and ranked according to seven criteria. Finally, the intimate link between bioavailability and bioremediation is explored. The report concludes with suggestions for moving bioavailability forward in the regulatory arena for both soil and sediment cleanup.
In 1999 the National Academies of Sciences, Engineering, and Medicine released a landmark report, Our Common Journey: A Transition toward Sustainability, which attempted to "reinvigorate the essential strategic connections between scientific research, technological development, and societies' efforts to achieve environmentally sustainable improvements in human well-being."1 The report emphasized the need for place-based and systems approaches to sustainability, proposed a research strategy for using scientific and technical knowledge to better inform the field, and highlighted a number of priorities for actions that could contribute to a sustainable future. The past 15 years have brought significant advances in observational and predictive capabilities for a range of natural and social systems, as well as development of other tools and approaches useful for sustainability planning. In addition, other frameworks for environmental decision making, such as those that focus on climate adaptation or resilience, have become increasingly prominent. A careful consideration of how these other approaches might intersect with sustainability is warranted, particularly in that they may affect similar resources or rely on similar underlying scientific data and models. 
 To further the discussion on these outstanding issues, the National Academies of Sciences, Engineering, and Medicine convened a workshop on January 14â€"15, 2016. Participants discussed progress in sustainability science during the last 15 years, potential opportunities for advancing the research and use of scientific knowledge to support a transition toward sustainability, and challenges specifically related to establishing indicators and observations to support sustainability research and practice. This report summarizes the presentations and discussions from the workshop.
Growing demands for water in many parts of the nation are fueling the search for new approaches to sustainable water management, including how best to store water. Society has historically relied on dams and reservoirs, but problems such as high evaporation rates and a lack of suitable land for dam construction are driving interest in the prospect of storing water underground. Managed underground storage should be considered a valuable tool in a water manager's portfolio, although it poses its own unique challenges that need to be addressed through research and regulatory measures.
The Klamath River basin, which spans parts of southern Oregon and northern California, has been the focus of a prominent conflict over competing uses for water. Management actions to protect threatened and endangered fish species in the basin have left less water available for irrigation in dry years and heightened tensions among farmers and other stakeholders including commercial fishermen, Native Americans, conservationists, hunters, anglers, and hydropower producers. This National Research Council book assesses two recent studies that evaluate various aspects of flows in the Klamath basin: (1) the Instream Flow Phase II study (IFS), conducted by Utah State University, and (2) the Natural Flow of the Upper Klamath Basin study (NFS), conducted by the U.S. Bureau of Reclamation (USBR). The book concludes that both studies offer important new information but do not provide enough information for detailed management of flows in the Klamath River, and it offers many suggestions for improving the studies. The report recommends that a comprehensive analysis of the many individual studies of the Klamath river basin be conducted so that a big picture perspective of the entire basin and research and management needs can emerge.
The Mississippi River is, in many ways, the nation's best known and most important river system. Mississippi River water quality is of paramount importance for sustaining the many uses of the river including drinking water, recreational and commercial activities, and support for the river's ecosystems and the environmental goods and services they provide. The Clean Water Act, passed by Congress in 1972, is the cornerstone of surface water quality protection in the United States, employing regulatory and nonregulatory measures designed to reduce direct pollutant discharges into waterways. The Clean Water Act has reduced much pollution in the Mississippi River from "point sources" such as industries and water treatment plants, but problems stemming from urban runoff, agriculture, and other "non-point sources" have proven more difficult to address. This book concludes that too little coordination among the 10 states along the river has left the Mississippi River an "orphan" from a water quality monitoring and assessment perspective. Stronger leadership from the U.S. Environmental Protection Agency (EPA) is needed to address these problems. Specifically, the EPA should establish a water quality data-sharing system for the length of the river, and work with the states to establish and achieve water quality standards. The Mississippi River corridor states also should be more proactive and cooperative in their water quality programs. For this effort, the EPA and the Mississippi River states should draw upon the lengthy experience of federal-interstate cooperation in managing water quality in the Chesapeake Bay.
While NASA Earth Science missions are planned on the basis of a specified lifetime, often they are able to function beyond the end of that period. Until recently NASA had no formal mechanism for determining whether those missions should be extended or whether the resources necessary for the extension should be applied to new missions. In August 2004, when NASA merged Earth and space sciences, the agency began using the Science Review process to make those extension determinations. NASA had asked the NRC to assess extension review processes, and after the merger, this study focused on the Science Review process. This report presents an assessment of that process and provides recommendations for adapting it to Earth Science missions.
The Clean Water Act (CWA) requires that wetlands be protected from degradation because of their important ecological functions including maintenance of high water quality and provision of fish and wildlife habitat. However, this protection generally does not encompass riparian areasâ€"the lands bordering rivers and lakesâ€"even though they often provide the same functions as wetlands. Growing recognition of the similarities in wetland and riparian area functioning and the differences in their legal protection led the NRC in 1999 to undertake a study of riparian areas, which has culminated in Riparian Areas: Functioning and Strategies for Management. The report is intended to heighten awareness of riparian areas commensurate with their ecological and societal values. The primary conclusion is that, because riparian areas perform a disproportionate number of biological and physical functions on a unit area basis, restoration of riparian functions along America's waterbodies should be a national goal.
The report evaluates a White Paper written by restoration planners in South Florida on the role of water flow in restoration plans. The report concludes that there is strong evidence that the velocity, rate, and spatial distribution of water flow play important roles in maintaining the tree islands and other ecologically important landscape features of the Everglades.
The report evaluates the plan to monitor and assess the condition of Florida's Everglades as restoration efforts proceed. The report finds that the plan is well grounded in scientific theory and principals of adaptive management. However, steps should be taken to ensure that information from those monitoring the ecology of the Everglades is readily available to those implementing the overall restoration effort. Also, the plan needs to place greater consideration on how population growth and land-use changes will affect the restoration effort and vice versa.
Disposal of radioactive waste from nuclear weapons production and power generation has caused public outcry and political consternation. Nuclear Wastes presents a critical review of some waste management and disposal alternatives to the current national policy of direct disposal of light water reactor spent fuel. The book offers clearcut conclusions for what the nation should do today and what solutions should be explored for tomorrow. The committee examines the currently used "once-through" fuel cycle versus different alternatives of separations and transmutation technology systems, by which hazardous radionuclides are converted to nuclides that are either stable or radioactive with short half-lives. The volume provides detailed findings and conclusions about the status and feasibility of plutonium extraction and more advanced separations technologies, as well as three principal transmutation concepts for commercial reactor spent fuel. The book discusses nuclear proliferation; the U.S. nuclear regulatory structure; issues of health, safety and transportation; the proposed sale of electrical energy as a means of paying for the transmutation system; and other key issues.
In 1997, the National Aeronautics and Space Administration (NASA) formed the National Astrobiology Institute to coordinate and fund research into the origins, distribution, and fate of life in the universe. A 2002 NRC study of that program, Life in the Universe: An Assessment of U.S. and International Programs in Astrobiology, raised a number of concerns about the Astrobiology program. In particular, it concluded that areas of astrophysics related to the astronomical environment in which life arose on earth were not well represented in the program. In response to that finding, the Space Studies Board requested the original study committee, the Committee on the Origins and Evolution of Life, to examine ways to augment and integrate astronomy and astrophysics into the Astrobiology program. This report presents the results of that study. It provides a review of the earlier report and related efforts, a detailed examination of the elements of the astrobiology program that would benefit from greater integration and augmentation of astronomy and astrophysics, and an assessment of ways to facilitate the integration of astronomy with other astrobiology disciplines.
Sacramento, California, has grown literally at the edge of the Sacramento and American Rivers and for 150 years has struggled to protect itself from periodic floods by employing structural and land management measures. Much of the population lives behind levees, and most of the city's downtown business and government area is vulnerable to flooding. A major flood in 1986 served as impetus for efforts by federal, state, and local entities to identify an acceptable and feasible set of measures to increase Sacramento's level of safety from American River floods. Numerous options were identified in 1991 by the U.S. Army Corps of Engineers (USACE) in a report known as the American River Watershed Investigation. Due to the controversial nature of many of the alternatives identified in that report, study participants were not able to reach consensus on any of the flood control options. In response, the Congress directed the USACE to reevaluate available flood control options and, at the same time, asked the USACE to engage the National Research Council (NRC) as an independent advisor on these difficult studies. In 1995 NRC's Committee on Flood Control Alternatives in the American River Basin issued Flood Risk Management and the American River Basin: An Evaluation. This report outlined an approach for improving the selection of a flood risk reduction strategy from the many available.
The U.S. Army Corps of Engineers has long been one of the federal government's key agencies in planning the uses of the nation's waterways and water resources. Though responsible for a range of water-related programs, the Corps's two traditional programs have been flood damage reduction and navigation enhancement. The water resource needs of the nation, however, have for decades been shifting away from engineered control of watersheds toward restoration of ecosystem services and natural hydrologic variability. In response to these shifting needs, legislation was enacted in 1990 which initiated the Corps's involvement in ecological restoration, which is now on par with the Corps's traditional flood damage reduction and navigation roles. This book provides an analysis of the Corps's efforts in ecological restoration, and provides broader recommendations on how the corps might streamline their planning process. It also assesses the impacts of federal legislation on the Corps planning and projects, and provides recommendations on how relevant federal policies might be altered in order to improve Corps planning. Another important shift affecting the Corps has been federal cost-sharing arrangements (enacted in 1986), mandating greater financial participation in Corps water projects by local co-sponsors. The book describes how this has affected the Corps-sponsor relationship, and comments upon how each group must adjust to new planning and political realities.
The fiscal and technological limitations associated with cleaning up hazardous waste sites to background conditions have prompted responsible parties to turn to risk-based methods for environmental rememdiation. Environmental Cleanup at Navy Facilities reviews and critiques risk-based methods, including those developed by the U.S. Environmental Protection Agency and the American Society of Testing and Materials. These critiques lead to the identification of eleven criteria that must be part of any risk-based methodology adopted by the Navy, a responsible party with a large number of complex and heavily contaminated waste sites. January
The provision of safe drinking water has been an important factor in the improvement of the health status of U.S. communities since the turn of the last century. Nonetheless, outbreaks of waterborne disease and incidences of chemical contamination of drinking water continue to occur. Setting Priorities for Drinking Water Contaminants recommends a new process for the U.S. Environmental Protection Agency to use in deciding which potential drinking water contaminants should be regulated in public water supplies to provide the greatest protection against waterborne illnesses. The book covers chemical and microbiological contaminants and includes a historical review of past approaches to setting priorities for drinking water contaminants and other environmental pollutants. It emphasizes the need for expert judgment in this process and for a conservative approach that considers public health protection as the first priority.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.