This book contains a first systematic study of compressible fluid flows subject to stochastic forcing. The bulk is the existence of dissipative martingale solutions to the stochastic compressible Navier-Stokes equations. These solutions are weak in the probabilistic sense as well as in the analytical sense. Moreover, the evolution of the energy can be controlled in terms of the initial energy. We analyze the behavior of solutions in short-time (where unique smooth solutions exists) as well as in the long term (existence of stationary solutions). Finally, we investigate the asymptotics with respect to several parameters of the model based on the energy inequality. Contents Part I: Preliminary results Elements of functional analysis Elements of stochastic analysis Part II: Existence theory Modeling fluid motion subject to random effects Global existence Local well-posedness Relative energy inequality and weak–strong uniqueness Part III: Applications Stationary solutions Singular limits
Existence Theory for Generalized Newtonian Fluids provides a rigorous mathematical treatment of the existence of weak solutions to generalized Navier-Stokes equations modeling Non-Newtonian fluid flows. The book presents classical results, developments over the last 50 years of research, and recent results with proofs. - Provides the state-of-the-art of the mathematical theory of Generalized Newtonian fluids - Combines elliptic, parabolic and stochastic problems within existence theory under one umbrella - Focuses on the construction of the solenoidal Lipschitz truncation, thus enabling readers to apply it to mathematical research - Approaches stochastic PDEs with a perspective uniquely suitable for analysis, providing an introduction to Galerkin method for SPDEs and tools for compactness
With contributions from noted experts from Europe and North America, Mass Spectrometry Instrumentation, Interpretation, and Applications serves as a forum to introduce students to the whole world of mass spectrometry and to the many different perspectives that each scientific field brings to its use. The book emphasizes the use of this important analytical technique in many different fields, including applications for organic and inorganic chemistry, forensic science, biotechnology, and many other areas. After describing the history of mass spectrometry, the book moves on to discuss instrumentation, theory, and basic applications.
Existence Theory for Generalized Newtonian Fluids provides a rigorous mathematical treatment of the existence of weak solutions to generalized Navier-Stokes equations modeling Non-Newtonian fluid flows. The book presents classical results, developments over the last 50 years of research, and recent results with proofs. - Provides the state-of-the-art of the mathematical theory of Generalized Newtonian fluids - Combines elliptic, parabolic and stochastic problems within existence theory under one umbrella - Focuses on the construction of the solenoidal Lipschitz truncation, thus enabling readers to apply it to mathematical research - Approaches stochastic PDEs with a perspective uniquely suitable for analysis, providing an introduction to Galerkin method for SPDEs and tools for compactness
This book contains a first systematic study of compressible fluid flows subject to stochastic forcing. The bulk is the existence of dissipative martingale solutions to the stochastic compressible Navier-Stokes equations. These solutions are weak in the probabilistic sense as well as in the analytical sense. Moreover, the evolution of the energy can be controlled in terms of the initial energy. We analyze the behavior of solutions in short-time (where unique smooth solutions exists) as well as in the long term (existence of stationary solutions). Finally, we investigate the asymptotics with respect to several parameters of the model based on the energy inequality. Contents Part I: Preliminary results Elements of functional analysis Elements of stochastic analysis Part II: Existence theory Modeling fluid motion subject to random effects Global existence Local well-posedness Relative energy inequality and weak–strong uniqueness Part III: Applications Stationary solutions Singular limits
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.