Special relativity provides the foundations of our knowledge of space and time. Without it, our understanding of the world, and its place in the universe, would be unthinkable. This book gives a concise, elementary, yet exceptionally modern, introduction to special relativity. It is a gentle yet serious 'first encounter', in that it conveys a true understanding rather than purely reports the basic facts. Only very elementary mathematical knowledge is needed to master it (basic high-school maths), yet it will leave the reader with a sound understanding of the subject. Special Relativity: A First Encounter starts with a broad historical introduction and motivation of the basic notions. The central chapters are dedicated to special relativity, mainly following Einstein's historical route. Later chapters turn to various applications in all parts of physics and everyday life. Unlike other books on the subject, the current status of the experimental foundations of special relativity is accurately reported and the experiments explained. This book will appeal to anyone wanting a introduction to the subject, as well as being background reading for students beginning a course in physics.
Decoherence, a concept known only to few physicists when the first edition appeared in 1996, has since become firmly established experimentally and understood theoretically, as well as widely reported in the literature. The major consequences of decoherence are the emergence of "classicality" in general, superselection rules, the border line between microscopic and macroscopic behavior in molecules and field theory, the emergence of classical spacetime, and the appearance of quantum jumps. The most important new developments in this rapidly evolving field are included in the second edition of this book, which has become a standard reference on the subject. All chapters have been thoroughly revised and updated. New fields of application now addressed span chaos theory, quantum information, neuroscience, primordial fluctuations in cosmology, black holes and string theory, experimental tests, and interpretational issues. While the major part of the book is concerned with environmental decoherence derived from a universal Schrödinger equation, later chapters address related or competing methods, such as consistent histories, open system dynamics, algebraic approaches, and collapse models.
A unique description of the phenomena that arise from the interaction between quantum systems and their environment. Because of the novel character of the approach discussed, the book addresses scientists from all fields of physics and related disciplines as well as students of physics.
Bertoloni Meli reexamines such major texts as Galileo's Dialogues Concerning Two New Sciences, Descartes' Principles of Philosophy, and Newton's Principia, and in them finds a reliance on objects that has escaped proper understanding. From Pappus of Alexandria to Guidobaldo dal Monte, Bertoloni Meli sees significant developments in the history of mechanical experimentation, all of them crucial for understanding Galileo. Bertoloni Meli uses similarities and tensions between dal Monte and Galileo as a springboard for exploring the revolutionary nature of seventeenth-century mechanics.' (Back cover)
Special relativity provides the foundations of our knowledge of space and time. Without it, our understanding of the world, and its place in the universe, would be unthinkable. This book gives a concise, elementary, yet exceptionally modern, introduction to special relativity. It is a gentle yet serious 'first encounter', in that it conveys a true understanding rather than purely reports the basic facts. Only very elementary mathematical knowledge is needed to master it (basic high-school maths), yet it will leave the reader with a sound understanding of the subject. Special Relativity: A First Encounter starts with a broad historical introduction and motivation of the basic notions. The central chapters are dedicated to special relativity, mainly following Einstein's historical route. Later chapters turn to various applications in all parts of physics and everyday life. Unlike other books on the subject, the current status of the experimental foundations of special relativity is accurately reported and the experiments explained. This book will appeal to anyone wanting a introduction to the subject, as well as being background reading for students beginning a course in physics.
The relation between quantum theory and the theory of gravitation remains one of the most outstanding unresolved issues of modern physics. According to general expectation, general relativity as well as quantum (field) theory in a fixed background spacetime cannot be fundamentally correct. Hence there should exist a broader theory comprising both in appropriate limits, i.e., quantum gravity. This book gives readers a comprehensive introduction accessible to interested non-experts to the main issues surrounding the search for quantum gravity. These issues relate to fundamental questions concerning the various formalisms of quantization; specific questions concerning concrete processes, like gravitational collapse or black-hole evaporation; and the all important question concerning the possibility of experimental tests of quantum-gravity effects.
Decoherence, a concept known only to few physicists when the first edition appeared in 1996, has since become firmly established experimentally and understood theoretically, as well as widely reported in the literature. The major consequences of decoherence are the emergence of "classicality" in general, superselection rules, the border line between microscopic and macroscopic behavior in molecules and field theory, the emergence of classical spacetime, and the appearance of quantum jumps. The most important new developments in this rapidly evolving field are included in the second edition of this book, which has become a standard reference on the subject. All chapters have been thoroughly revised and updated. New fields of application now addressed span chaos theory, quantum information, neuroscience, primordial fluctuations in cosmology, black holes and string theory, experimental tests, and interpretational issues. While the major part of the book is concerned with environmental decoherence derived from a universal Schrödinger equation, later chapters address related or competing methods, such as consistent histories, open system dynamics, algebraic approaches, and collapse models.
General relativity ranks among the most accurately tested fundamental theories in all of physics. Deficiencies in mathematical and conceptual understanding still exist, hampering further progress. This book collects surveys by experts in mathematical relativity writing about the current status of, and problems in, their fields. There are four contributions for each of the following mathematical areas: differential geometry and differential topology, analytical methods and differential equations, and numerical methods.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.