Researchers and practitioners of cryptography and information security are constantly challenged to respond to new attacks and threats to information systems. Authentication Codes and Combinatorial Designs presents new findings and original work on perfect authentication codes characterized in terms of combinatorial designs, namely strong partially
Chinese Remainder Theorem, CRT, is one of the jewels of mathematics. It is a perfect combination of beauty and utility or, in the words of Horace, omne tulit punctum qui miscuit utile dulci. Known already for ages, CRT continues to present itself in new contexts and open vistas for new types of applications. So far, its usefulness has been obvious within the realm of “three C's”. Computing was its original field of application, and continues to be important as regards various aspects of algorithmics and modular computations. Theory of codes and cryptography are two more recent fields of application.This book tells about CRT, its background and philosophy, history, generalizations and, most importantly, its applications. The book is self-contained. This means that no factual knowledge is assumed on the part of the reader. We even provide brief tutorials on relevant subjects, algebra and information theory. However, some mathematical maturity is surely a prerequisite, as our presentation is at an advanced undergraduate or beginning graduate level. We have tried to make the exposition innovative, many of the individual results being new. We will return to this matter, as well as to the interdependence of the various parts of the book, at the end of the Introduction.A special course about CRT can be based on the book. The individual chapters are largely independent and, consequently, the book can be used as supplementary material for courses in algorithmics, coding theory, cryptography or theory of computing. Of course, the book is also a reference for matters dealing with CRT.
Modular Forms with Integral and Half-Integral Weights" focuses on the fundamental theory of modular forms of one variable with integral and half-integral weights. The main theme of the book is the theory of Eisenstein series. It is a fundamental problem to construct a basis of the orthogonal complement of the space of cusp forms; as is well known, this space is spanned by Eisenstein series for any weight greater than or equal to 2. The book proves that the conclusion holds true for weight 3/2 by explicitly constructing a basis of the orthogonal complement of the space of cusp forms. The problem for weight 1/2, which was solved by Serre and Stark, will also be discussed in this book. The book provides readers not only basic knowledge on this topic but also a general survey of modern investigation methods of modular forms with integral and half-integral weights. It will be of significant interest to researchers and practitioners in modular forms of mathematics. Dr. Xueli Wang is a Professor at South China Normal University, China. Dingyi Pei is a Professor at Guangzhou University, China.
Modular Forms with Integral and Half-Integral Weights" focuses on the fundamental theory of modular forms of one variable with integral and half-integral weights. The main theme of the book is the theory of Eisenstein series. It is a fundamental problem to construct a basis of the orthogonal complement of the space of cusp forms; as is well known, this space is spanned by Eisenstein series for any weight greater than or equal to 2. The book proves that the conclusion holds true for weight 3/2 by explicitly constructing a basis of the orthogonal complement of the space of cusp forms. The problem for weight 1/2, which was solved by Serre and Stark, will also be discussed in this book. The book provides readers not only basic knowledge on this topic but also a general survey of modern investigation methods of modular forms with integral and half-integral weights. It will be of significant interest to researchers and practitioners in modular forms of mathematics. Dr. Xueli Wang is a Professor at South China Normal University, China. Dingyi Pei is a Professor at Guangzhou University, China.
Researchers and practitioners of cryptography and information security are constantly challenged to respond to new attacks and threats to information systems. Authentication Codes and Combinatorial Designs presents new findings and original work on perfect authentication codes characterized in terms of combinatorial designs, namely strong partially
Chinese Remainder Theorem, CRT, is one of the jewels of mathematics. It is a perfect combination of beauty and utility or, in the words of Horace, omne tulit punctum qui miscuit utile dulci. Known already for ages, CRT continues to present itself in new contexts and open vistas for new types of applications. So far, its usefulness has been obvious within the realm of “three C's”. Computing was its original field of application, and continues to be important as regards various aspects of algorithmics and modular computations. Theory of codes and cryptography are two more recent fields of application.This book tells about CRT, its background and philosophy, history, generalizations and, most importantly, its applications. The book is self-contained. This means that no factual knowledge is assumed on the part of the reader. We even provide brief tutorials on relevant subjects, algebra and information theory. However, some mathematical maturity is surely a prerequisite, as our presentation is at an advanced undergraduate or beginning graduate level. We have tried to make the exposition innovative, many of the individual results being new. We will return to this matter, as well as to the interdependence of the various parts of the book, at the end of the Introduction.A special course about CRT can be based on the book. The individual chapters are largely independent and, consequently, the book can be used as supplementary material for courses in algorithmics, coding theory, cryptography or theory of computing. Of course, the book is also a reference for matters dealing with CRT.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.