The book is an introduction, for both graduate students and newcomers to the field of the modern theory of mesoscopic complex systems, time series, hypergraphs and graphs, scaled random walks, and modern information theory. As these are applied for the exploration and characterization of complex systems. Our self-consistent review provides the necessary basis for consistency. We discuss a number of applications such diverse as urban structures and musical compositions.
Most networks and databases that humans have to deal with contain large, albeit finite number of units. Their structure, for maintaining functional consistency of the components, is essentially not random and calls for a precise quantitative description of relations between nodes (or data units) and all network components. This book is an introduction, for both graduate students and newcomers to the field, to the theory of graphs and random walks on such graphs. The methods based on random walks and diffusions for exploring the structure of finite connected graphs and databases are reviewed (Markov chain analysis). This provides the necessary basis for consistently discussing a number of applications such diverse as electric resistance networks, estimation of land prices, urban planning, linguistic databases, music, and gene expression regulatory networks.
This book introduces and studies a number of stochastic models of subsistence, communication, social evolution and political transition that will allow the reader to grasp the role of uncertainty as a fundamental property of our irreversible world. At the same time, it aims to bring about a more interdisciplinary and quantitative approach across very diverse fields of research in the humanities and social sciences. Through the examples treated in this work – including anthropology, demography, migration, geopolitics, management, and bioecology, among other things – evidence is gathered to show that volatile environments may change the rules of the evolutionary selection and dynamics of any social system, creating a situation of adaptive uncertainty, in particular, whenever the rate of change of the environment exceeds the rate of adaptation. Last but not least, it is hoped that this book will contribute to the understanding that inherent randomness can also be a great opportunity – for social systems and individuals alike – to help face the challenge of “survival under uncertainty”.
Cities can be considered to be among the largest and most complex artificial networks created by human beings. Due to the numerous and diverse human-driven activities, urban network topology and dynamics can differ quite substantially from that of natural networks and so call for an alternative method of analysis. The intent of the present monograph is to lay down the theoretical foundations for studying the topology of compact urban patterns, using methods from spectral graph theory and statistical physics. These methods are demonstrated as tools to investigate the structure of a number of real cities with widely differing properties: medieval German cities, the webs of city canals in Amsterdam and Venice, and a modern urban structure such as found in Manhattan. Last but not least, the book concludes by providing a brief overview of possible applications that will eventually lead to a useful body of knowledge for architects, urban planners and civil engineers.
The book is an introduction, for both graduate students and newcomers to the field of the modern theory of mesoscopic complex systems, time series, hypergraphs and graphs, scaled random walks, and modern information theory. As these are applied for the exploration and characterization of complex systems. Our self-consistent review provides the necessary basis for consistency. We discuss a number of applications such diverse as urban structures and musical compositions.
This book introduces and studies a number of stochastic models of subsistence, communication, social evolution and political transition that will allow the reader to grasp the role of uncertainty as a fundamental property of our irreversible world. At the same time, it aims to bring about a more interdisciplinary and quantitative approach across very diverse fields of research in the humanities and social sciences. Through the examples treated in this work – including anthropology, demography, migration, geopolitics, management, and bioecology, among other things – evidence is gathered to show that volatile environments may change the rules of the evolutionary selection and dynamics of any social system, creating a situation of adaptive uncertainty, in particular, whenever the rate of change of the environment exceeds the rate of adaptation. Last but not least, it is hoped that this book will contribute to the understanding that inherent randomness can also be a great opportunity – for social systems and individuals alike – to help face the challenge of “survival under uncertainty”.
Cities can be considered to be among the largest and most complex artificial networks created by human beings. Due to the numerous and diverse human-driven activities, urban network topology and dynamics can differ quite substantially from that of natural networks and so call for an alternative method of analysis. The intent of the present monograph is to lay down the theoretical foundations for studying the topology of compact urban patterns, using methods from spectral graph theory and statistical physics. These methods are demonstrated as tools to investigate the structure of a number of real cities with widely differing properties: medieval German cities, the webs of city canals in Amsterdam and Venice, and a modern urban structure such as found in Manhattan. Last but not least, the book concludes by providing a brief overview of possible applications that will eventually lead to a useful body of knowledge for architects, urban planners and civil engineers.
Most networks and databases that humans have to deal with contain large, albeit finite number of units. Their structure, for maintaining functional consistency of the components, is essentially not random and calls for a precise quantitative description of relations between nodes (or data units) and all network components. This book is an introduction, for both graduate students and newcomers to the field, to the theory of graphs and random walks on such graphs. The methods based on random walks and diffusions for exploring the structure of finite connected graphs and databases are reviewed (Markov chain analysis). This provides the necessary basis for consistently discussing a number of applications such diverse as electric resistance networks, estimation of land prices, urban planning, linguistic databases, music, and gene expression regulatory networks.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.