The same factors that motivated the writing of our first volume of strategic activities on fractals continued to encourage the assembly of additional activities for this second volume. Fractals provide a setting wherein students can enjoy hands-on experiences that involve important mathematical content connected to a wide range of physical and social phenomena. The striking graphic images, unexpected geometric properties, and fascinating numerical processes offer unparalleled opportunity for enthusiastic student inquiry. Students sense the vigor present in the growing and highly integrative discipline of fractal geom etry as they are introduced to mathematical developments that have occurred during the last half of the twentieth century. Few branches of mathematics and computer science offer such a contem porary portrayal of the wonderment available in careful analysis, in the amazing dialogue between numeric and geometric processes, and in the energetic interaction between mathematics and other disciplines. Fractals continue to supply an uncommon setting for animated teaching and learn ing activities that focus upon fundamental mathematical concepts, connections, problem-solving techniques, and many other major topics of elementary and advanced mathematics. It remains our hope that, through this second volume of strategic activities, readers will find their enjoyment of mathematics heightened and their appreciation for the dynamics of the world in creased. We want experiences with fractals to enliven curiosity and to stretch the imagination.
Fractals for the Classroom breaks new ground as it brings an exciting branch of mathematics into the classroom. The book is a collection of independent chapters on the major concepts related to the science and mathematics of fractals. Written at the mathematical level of an advanced secondary student, Fractals for the Classroom includes many fascinating insights for the classroom teacher and integrates illustrations from a wide variety of applications with an enjoyable text to help bring the concepts alive and make them understandable to the average reader. This book will have a tremendous impact upon teachers, students, and the mathematics education of the general public. With the forthcoming companion materials, including four books on strategic classroom activities and lessons with interactive computer software, this package will be unparalleled.
For almost ten years chaos and fractals have been enveloping many areas of mathematics and the natural sciences in their power, creativity and expanse. Reaching far beyond the traditional bounds of mathematics and science to the realms of popular culture, they have captured the attention and enthusiasm of a worldwide audience. The fourteen chapters of the book cover the central ideas and concepts, as well as many related topics including, the Mandelbrot Set, Julia Sets, Cellular Automata, L-Systems, Percolation and Strange Attractors, and each closes with the computer code for a central experiment. In the two appendices, Yuval Fisher discusses the details and ideas of fractal image compression, while Carl J.G. Evertsz and Benoit Mandelbrot introduce the foundations and implications of multifractals.
For almost ten years chaos and fractals have been enveloping many areas of mathematics and the natural sciences in their power, creativity and expanse. Reaching far beyond the traditional bounds of mathematics and science to the realms of popular culture, they have captured the attention and enthusiasm of a worldwide audience. The fourteen chapters of the book cover the central ideas and concepts, as well as many related topics including, the Mandelbrot Set, Julia Sets, Cellular Automata, L-Systems, Percolation and Strange Attractors, and each closes with the computer code for a central experiment. In the two appendices, Yuval Fisher discusses the details and ideas of fractal image compression, while Carl J.G. Evertsz and Benoit Mandelbrot introduce the foundations and implications of multifractals.
The same factors that motivated the writing of our first volume of strategic activities on fractals continued to encourage the assembly of additional activities for this second volume. Fractals provide a setting wherein students can enjoy hands-on experiences that involve important mathematical content connected to a wide range of physical and social phenomena. The striking graphic images, unexpected geometric properties, and fascinating numerical processes offer unparalleled opportunity for enthusiastic student inquiry. Students sense the vigor present in the growing and highly integrative discipline of fractal geom etry as they are introduced to mathematical developments that have occurred during the last half of the twentieth century. Few branches of mathematics and computer science offer such a contem porary portrayal of the wonderment available in careful analysis, in the amazing dialogue between numeric and geometric processes, and in the energetic interaction between mathematics and other disciplines. Fractals continue to supply an uncommon setting for animated teaching and learn ing activities that focus upon fundamental mathematical concepts, connections, problem-solving techniques, and many other major topics of elementary and advanced mathematics. It remains our hope that, through this second volume of strategic activities, readers will find their enjoyment of mathematics heightened and their appreciation for the dynamics of the world in creased. We want experiences with fractals to enliven curiosity and to stretch the imagination.
Fractals for the Classroom breaks new ground as it brings an exciting branch of mathematics into the classroom. The book is a collection of independent chapters on the major concepts related to the science and mathematics of fractals. Written at the mathematical level of an advanced secondary student, Fractals for the Classroom includes many fascinating insights for the classroom teacher and integrates illustrations from a wide variety of applications with an enjoyable text to help bring the concepts alive and make them understandable to the average reader. This book will have a tremendous impact upon teachers, students, and the mathematics education of the general public. With the forthcoming companion materials, including four books on strategic classroom activities and lessons with interactive computer software, this package will be unparalleled.
There are many reasons for writing this first volume of strategic activities on fractals. The most pervasive is the compelling desire to provide students of mathematics with a set of accessible, hands-on experiences with fractals and their underlying mathematical principles and characteristics. Another is to show how fractals connect to many different aspects of mathematics and how the study of fractals can bring these ideas together. A third is to share the beauty of their structure and shape both through what the eye sees and what the mind visualizes. Fractals have captured the attention, enthusiasm, and interest of many people around the world. To the casual observer, their color, beauty, and geometric structure captivates the visual senses like few other things they have ever experienced in mathematics. To the computer scientist, fractals offer a rich environment in which to explore, create, and build a new visual world as an artist creating a new work. To the student, fractals bring mathematics out of past history and into the twenty-first century. To the mathematics teacher, fractals offer a unique, new opportunity to illustrate both the dynamics of mathematics and its many connecting links.
Fractals for the Classroom breaks new ground as it brings an exciting branch of mathematics into the classroom. The book is a collection of independent chapters on the major concepts related to the science and mathematics of fractals. Written at the mathematical level of an advanced secondary student, Fractals for the Classroom includes many fascinating insights for the classroom teacher and integrates illustrations from a wide variety of applications with an enjoyable text to help bring the concepts alive and make them understandable to the average reader. This book will have a tremendous impact upon teachers, students, and the mathematics education of the general public. With the forthcoming companion materials, including four books on strategic classroom activities and lessons with interactive computer software, this package will be unparalleled.
Written by the award winning authors of Chaos and Fractals (0-387-97903-4), this work introduces the reader to iterated function systems through a lively, interactive approach. This well-written, clearly illustrated book explores the history and the unlimited potential of fractals, while developing a basic mathematical understanding and appreciation for the topics.
This IMA Volume in Mathematics and its Applications FRACTALS IN MULTIMEDIA is a result of a very successful three-day minisymposium on the same title. The event was an integral part of the IMA annual program on Mathemat ics in Multimedia, 2000-2001. We would like to thank Michael F. Barnsley (Department of Mathematics and Statistics, University of Melbourne), Di etmar Saupe (Institut fUr Informatik, UniversiUit Leipzig), and Edward R. Vrscay (Department of Applied Mathematics, University of Waterloo) for their excellent work as organizers of the meeting and for editing the proceedings. We take this opportunity to thank the National Science Foundation for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA v PREFACE This volume grew out of a meeting on Fractals in Multimedia held at the IMA in January 2001. The meeting was an exciting and intense one, focused on fractal image compression, analysis, and synthesis, iterated function systems and fractals in education. The central concerns of the meeting were to establish within these areas where we are now and to develop a vision for the future.
Fractals for the Classroom breaks new ground as it brings an exciting branch of mathematics into the classroom. The book is a collection of independent chapters on the major concepts related to the science and mathematics of fractals. Written at the mathematical level of an advanced secondary student, Fractals for the Classroom includes many fascinating insights for the classroom teacher and integrates illustrations from a wide variety of applications with an enjoyable text to help bring the concepts alive and make them understandable to the average reader. This book will have a tremendous impact upon teachers, students, and the mathematics education of the general public. With the forthcoming companion materials, including four books on strategic classroom activities and lessons with interactive computer software, this package will be unparalleled.
Explores Mandelbrot and Julia sets, including three-dimensional rendering. Allows the user to enlarge and color two-, two and a half-, and three-dimensional renderings.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.