At the university level, in probability and statistics departments or electrical engineering departments, this book contains enough material for a graduate course, or even for an upper-level undergraduate course if the asymptotic studies are reduced to a minimum. The prerequisites for most of the chapters (l - 12) are fairly limited: the elements of Hilbert space theory, and the basics of axiomatic probability theory including L 2-spaces, the notions of distributions, random variables and bounded measures. The standards of precision, conciseness, and mathematical rigour which we have maintained in this text are in clearcut contrast with the majority of similar texts on the subject. The main advantage of this choice should be a considerable gain of time for the noninitiated reader, provided he or she has a taste for mathematical language. On the other hand, being fully aware of the usefulness of ARMA models for applications, we present carefully and in full detail the essential algorithms for practical modelling and identification of ARMA processes. The experience gained from several graduate courses on these themes (Universities of Paris-Sud and of Paris-7) has shown that the mathematical material included here is sufficient to build reasonable computer programs of data analysis by ARMA modelling. To facilitate the reading, we have inserted a bibliographical guide at the end of each chapter and, indicated by stars (* ... *), a few intricate mathematical points which may be skipped over by nonspecialists.
How can we predict the future without asking an astrologer? When a phenomenon is not evolving, experiments can be repeated and observations therefore accumulated; this is what we have done in Volume I. However history does not repeat itself. Prediction of the future can only be based on the evolution observed in the past. Yet certain phenomena are stable enough so that observation in a sufficient interval of time gives usable information on the future or the mechanism of evolution. Technically, the keys to asymptotic statistics are the following: laws of large numbers, central limit theorems, and likelihood calculations. We have sought the shortest route to these theorems by neglecting to present the most general models. The future statistician will use the foundations of the statistics of processes and should satisfy himself about the unity of the methods employed. At the same time, we have adhered as closely as possible to present day ideas of the theory of processes. For those who wish to follow the study of probabilities to postgraduate level, it is not a waste of time to begin with the least difficult technical situations. This book for final year mathematics courses is not the end of the matter. It acts as a springboard either for dealing concretely with the problems of the statistics of processes, or viii In trod uction to study in depth the more subtle aspects of probabilities.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.