This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev lattice structure, a simple extension of the well-established notion of a chain (or scale) of Hilbert spaces. The focus on a Hilbert space setting (rather than on an apparently more general Banach space) is not a severe constraint, but rather a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations. In contrast to other texts on partial differential equations, which consider either specific equation types or apply a collection of tools for solving a variety of equations, this book takes a more global point of view by focusing on the issues involved in determining the appropriate functional analytic setting in which a solution theory can be naturally developed. Applications to many areas of mathematical physics are also presented. The book aims to be largely self-contained. Full proofs to all but the most straightforward results are provided, keeping to a minimum references to other literature for essential material. It is therefore highly suitable as a resource for graduate courses and also for researchers, who will find new results for particular evolutionary systems from mathematical physics.
This book presents a concise introduction to a unified Hilbert space approach to the mathematical modelling of physical phenomena which has been developed over recent years by Picard and his co-workers. The main focus is on time-dependent partial differential equations with a particular structure in the Hilbert space setting that ensures well-posedness and causality, two essential properties of any reasonable model in mathematical physics or engineering.However, the application of the theory to other types of equations is also demonstrated. By means of illustrative examples, from the straightforward to the more complex, the authors show that many of the classical models in mathematical physics as well as more recent models of novel materials and interactions are covered, or can be restructured to be covered, by this unified Hilbert space approach. The reader should require only a basic foundation in the theory of Hilbert spaces and operators therein. For convenience, however, some of the more technical background requirements are covered in detail in two appendices The theory is kept as elementary as possible, making the material suitable for a senior undergraduate or master’s level course. In addition, researchers in a variety of fields whose work involves partial differential equations and applied operator theory will also greatly benefit from this approach to structuring their mathematical models in order that the general theory can be applied to ensure the essential properties of well-posedness and causality.
This book presents a concise introduction to a unified Hilbert space approach to the mathematical modelling of physical phenomena which has been developed over recent years by Picard and his co-workers. The main focus is on time-dependent partial differential equations with a particular structure in the Hilbert space setting that ensures well-posedness and causality, two essential properties of any reasonable model in mathematical physics or engineering.However, the application of the theory to other types of equations is also demonstrated. By means of illustrative examples, from the straightforward to the more complex, the authors show that many of the classical models in mathematical physics as well as more recent models of novel materials and interactions are covered, or can be restructured to be covered, by this unified Hilbert space approach. The reader should require only a basic foundation in the theory of Hilbert spaces and operators therein. For convenience, however, some of the more technical background requirements are covered in detail in two appendices The theory is kept as elementary as possible, making the material suitable for a senior undergraduate or master’s level course. In addition, researchers in a variety of fields whose work involves partial differential equations and applied operator theory will also greatly benefit from this approach to structuring their mathematical models in order that the general theory can be applied to ensure the essential properties of well-posedness and causality.
This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev lattice structure, a simple extension of the well-established notion of a chain (or scale) of Hilbert spaces. The focus on a Hilbert space setting (rather than on an apparently more general Banach space) is not a severe constraint, but rather a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations. In contrast to other texts on partial differential equations, which consider either specific equation types or apply a collection of tools for solving a variety of equations, this book takes a more global point of view by focusing on the issues involved in determining the appropriate functional analytic setting in which a solution theory can be naturally developed. Applications to many areas of mathematical physics are also presented. The book aims to be largely self-contained. Full proofs to all but the most straightforward results are provided, keeping to a minimum references to other literature for essential material. It is therefore highly suitable as a resource for graduate courses and also for researchers, who will find new results for particular evolutionary systems from mathematical physics.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.