This volume contains the proceedings of the third meeting on "Symmetries and Integrability of Difference Equations" (SIDE III). The collection includes original results not published elsewhere and articles that give a rigorous but concise overview of their subject, and provides a complete description of the state of the art. Research in the field of difference equations-often referred to more generally as discrete systems-has undergone impressive development in recent years. In this collection the reader finds the most important new developments in a number of areas, including: Lie-type symmetries of differential-difference and difference-difference equations, integrability of fully discrete systems such as cellular automata, the connection between integrability and discrete geometry, the isomonodromy approach to discrete spectral problems and related discrete Painlevé equations, difference and q-difference equations and orthogonal polynomials, difference equations and quantum groups, and integrability and chaos in discrete-time dynamical systems. The proceedings will be valuable to mathematicians and theoretical physicists interested in the mathematical aspects and/or in the physical applications of discrete nonlinear dynamics, with special emphasis on the systems that can be integrated by analytic methods or at least admit special explicit solutions. The research in this volume will also be of interest to engineers working in discrete dynamics as well as to theoretical biologists and economists.
This book on integrable systems and symmetries presents new results on applications of symmetries and integrability techniques to the case of equations defined on the lattice. This relatively new field has many applications, for example, in describing the evolution of crystals and molecular systems defined on lattices, and in finding numerical approximations for differential equations preserving their symmetries. The book contains three chapters and five appendices. The first chapter is an introduction to the general ideas about symmetries, lattices, differential difference and partial difference equations and Lie point symmetries defined on them. Chapter 2 deals with integrable and linearizable systems in two dimensions. The authors start from the prototype of integrable and linearizable partial differential equations, the Korteweg de Vries and the Burgers equations. Then they consider the best known integrable differential difference and partial difference equations. Chapter 3 considers generalized symmetries and conserved densities as integrability criteria. The appendices provide details which may help the readers' understanding of the subjects presented in Chapters 2 and 3. This book is written for PhD students and early researchers, both in theoretical physics and in applied mathematics, who are interested in the study of symmetries and integrability of difference equations.
This book is devoted to a topic that has undergone rapid and fruitful development over the last few years: symmetries and integrability of difference equations and q-difference equations and the theory of special functions that occur as solutions of such equations. Techniques that have been traditionally applied to solve linear and nonlinear differential equations are now being successfully adapted and applied to discrete equations. This volume is based on contributions made by leading experts in the field during the workshop on Symmetries and Integrability of Difference Equations held Estérel, Québec, in May 1994. Giving an up-to-date review of the current status of the field, the book treats these specific topics: Lie group and quantum group symmetries of difference and q-difference equations, integrable and nonintegrable discretizations of continuous integrable systems, integrability of difference equations, discrete Painlevé property and singularity confinement, integrable mappings, applications in statistical mechanics and field theories, Yang-Baxter equations, q-special functions and discrete polynomials, and q-difference integrable systems.
The Università del Caffè Brazil was born in March of 2000 as a result of a partnership between PENSA (Agribusiness Knowledge Center - FEA/USP and FIA) and illycaffè. The mission, since the beginning, has being the generation and dissemination of knowledge to the coffee system. To celebrate 18 years of activities we publish this collection of research conducted between 2013 and 2017. During these years of activity the UdC Brazil team, in close harmony with Illycaffè, has conducted courses to coffee growers and technicians covering technical and managerial aspects. There were more than 9 thousand participations in seminars, short courses and five editions of Specialization Course in the Coffee Agribusiness. In tune with the needs of coffee growers and illycaffè, since 2014 the UdC Brazil courses are held at a distance through the portal universidadedocafe.com. Aligned with its mission, the University of Caffè Brazil generates knowledge through the production of research. This book intends to support the dissemination of the knowledge to the community of the coffee agribusiness, adding value to all its participants.
This book is devoted to a topic that has undergone rapid and fruitful development over the last few years: symmetries and integrability of difference equations and q-difference equations and the theory of special functions that occur as solutions of such equations. Techniques that have been traditionally applied to solve linear and nonlinear differential equations are now being successfully adapted and applied to discrete equations. This volume is based on contributions made by leading experts in the field during the workshop on Symmetries and Integrability of Difference Equations held Estérel, Québec, in May 1994. Giving an up-to-date review of the current status of the field, the book treats these specific topics: Lie group and quantum group symmetries of difference and q-difference equations, integrable and nonintegrable discretizations of continuous integrable systems, integrability of difference equations, discrete Painlevé property and singularity confinement, integrable mappings, applications in statistical mechanics and field theories, Yang-Baxter equations, q-special functions and discrete polynomials, and q-difference integrable systems.
This volume contains the proceedings of the third meeting on "Symmetries and Integrability of Difference Equations" (SIDE III). The collection includes original results not published elsewhere and articles that give a rigorous but concise overview of their subject, and provides a complete description of the state of the art. Research in the field of difference equations-often referred to more generally as discrete systems-has undergone impressive development in recent years. In this collection the reader finds the most important new developments in a number of areas, including: Lie-type symmetries of differential-difference and difference-difference equations, integrability of fully discrete systems such as cellular automata, the connection between integrability and discrete geometry, the isomonodromy approach to discrete spectral problems and related discrete Painlevé equations, difference and q-difference equations and orthogonal polynomials, difference equations and quantum groups, and integrability and chaos in discrete-time dynamical systems. The proceedings will be valuable to mathematicians and theoretical physicists interested in the mathematical aspects and/or in the physical applications of discrete nonlinear dynamics, with special emphasis on the systems that can be integrated by analytic methods or at least admit special explicit solutions. The research in this volume will also be of interest to engineers working in discrete dynamics as well as to theoretical biologists and economists.
This book on integrable systems and symmetries presents new results on applications of symmetries and integrability techniques to the case of equations defined on the lattice. This relatively new field has many applications, for example, in describing the evolution of crystals and molecular systems defined on lattices, and in finding numerical approximations for differential equations preserving their symmetries. The book contains three chapters and five appendices. The first chapter is an introduction to the general ideas about symmetries, lattices, differential difference and partial difference equations and Lie point symmetries defined on them. Chapter 2 deals with integrable and linearizable systems in two dimensions. The authors start from the prototype of integrable and linearizable partial differential equations, the Korteweg de Vries and the Burgers equations. Then they consider the best known integrable differential difference and partial difference equations. Chapter 3 considers generalized symmetries and conserved densities as integrability criteria. The appendices provide details which may help the readers' understanding of the subjects presented in Chapters 2 and 3. This book is written for PhD students and early researchers, both in theoretical physics and in applied mathematics, who are interested in the study of symmetries and integrability of difference equations.
This book is devoted to a classical topic that has undergone rapid and fruitful development over the past 25 years, namely Bäcklund and Darboux transformations and their applications in the theory of integrable systems, also known as soliton theory. The book consists of two parts. The first is a series of introductory pedagogical lectures presented by leading experts in the field. They are devoted respectively to Bäcklund transformations of Painlevé equations, to the dressing method and Bäcklund and Darboux transformations, and to the classical geometry of Bäcklund transformations and their ap.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.