Taking a practical approach to the subject, Advanced Engineering Mathematics with MATLAB, Third Edition continues to integrate technology into the conventional topics of engineering mathematics. The author employs MATLAB to reinforce concepts and solve problems that require heavy computation. MATLAB scripts are available for download at www.crcpres
Through four previous editions of Advanced Engineering Mathematics with MATLAB, the author presented a wide variety of topics needed by today's engineers. The fifth edition of that book, available now, has been broken into two parts: topics currently needed in mathematics courses and a new stand-alone volume presenting topics not often included in these courses and consequently unknown to engineering students and many professionals. The overall structure of this new book consists of two parts: transform methods and random processes. Built upon a foundation of applied complex variables, the first part covers advanced transform methods, as well as z-transforms and Hilbert transforms--transforms of particular interest to systems, communication, and electrical engineers. This portion concludes with Green's function, a powerful method of analyzing systems. The second portion presents random processes--processes that more accurately model physical and biological engineering. Of particular interest is the inclusion of stochastic calculus. The author continues to offer a wealth of examples and applications from the scientific and engineering literature, a highlight of his previous books. As before, theory is presented first, then examples, and then drill problems. Answers are given in the back of the book. This book is all about the future: The purpose of this book is not only to educate the present generation of engineers but also the next. "The main strength is the text is written from an engineering perspective. The majority of my students are engineers. The physical examples are related to problems of interest to the engineering students." --Lea Jenkins, Clemson University
Taking a practical approach to the subject, Advanced Engineering Mathematics with MATLAB, Third Edition continues to integrate technology into the conventional topics of engineering mathematics. The author employs MATLAB to reinforce concepts and solve problems that require heavy computation. MATLAB scripts are available for download at www.crcpres
Since publication of the first edition over a decade ago, Green’s Functions with Applications has provided applied scientists and engineers with a systematic approach to the various methods available for deriving a Green’s function. This fully revised Second Edition retains the same purpose, but has been meticulously updated to reflect the current state of the art. The book opens with necessary background information: a new chapter on the historical development of the Green’s function, coverage of the Fourier and Laplace transforms, a discussion of the classical special functions of Bessel functions and Legendre polynomials, and a review of the Dirac delta function. The text then presents Green’s functions for each class of differential equation (ordinary differential, wave, heat, and Helmholtz equations) according to the number of spatial dimensions and the geometry of the domain. Detailing step-by-step methods for finding and computing Green’s functions, each chapter contains a special section devoted to topics where Green’s functions particularly are useful. For example, in the case of the wave equation, Green’s functions are beneficial in describing diffraction and waves. To aid readers in developing practical skills for finding Green’s functions, worked examples, problem sets, and illustrations from acoustics, applied mechanics, antennas, and the stability of fluids and plasmas are featured throughout the text. A new chapter on numerical methods closes the book. Included solutions and hundreds of references to the literature on the construction and use of Green's functions make Green’s Functions with Applications, Second Edition a valuable sourcebook for practitioners as well as graduate students in the sciences and engineering.
Methods for Solving Mixed Boundary Value Problems An up-to-date treatment of the subject, Mixed Boundary Value Problems focuses on boundary value problems when the boundary condition changes along a particular boundary. The book often employs numerical methods to solve mixed boundary value problems and the associated integral equat
For most scientists and engineers, the only analytic technique for solving linear partial differential equations is separation of variables. In Transform Methods for Solving Partial Differential Equations, the author uses the power of complex variables to demonstrate how Laplace and Fourier transforms can be harnessed to solve many practical, everyday problems experienced by scientists and engineers. Unlike many mathematics texts, this book provides a step-by-step analysis of problems taken from scientific and engineering literature. Detailed solutions are given in the back of the book. This essential text/reference draws from the latest literature on transform methods to provide in-depth discussions on the joint transform problem, the Cagniard-de Hoop method, and the Wiener-Hopf technique. Some 1,500 references are included as well.
Through four previous editions of Advanced Engineering Mathematics with MATLAB, the author presented a wide variety of topics needed by today's engineers. The fifth edition of that book, available now, has been broken into two parts: topics currently needed in mathematics courses and a new stand-alone volume presenting topics not often included in these courses and consequently unknown to engineering students and many professionals. The overall structure of this new book consists of two parts: transform methods and random processes. Built upon a foundation of applied complex variables, the first part covers advanced transform methods, as well as z-transforms and Hilbert transforms--transforms of particular interest to systems, communication, and electrical engineers. This portion concludes with Green's function, a powerful method of analyzing systems. The second portion presents random processes--processes that more accurately model physical and biological engineering. Of particular interest is the inclusion of stochastic calculus. The author continues to offer a wealth of examples and applications from the scientific and engineering literature, a highlight of his previous books. As before, theory is presented first, then examples, and then drill problems. Answers are given in the back of the book. This book is all about the future: The purpose of this book is not only to educate the present generation of engineers but also the next. "The main strength is the text is written from an engineering perspective. The majority of my students are engineers. The physical examples are related to problems of interest to the engineering students." --Lea Jenkins, Clemson University
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.