Building on his highly successful textbook on C++, David Yevick provides a concise yet comprehensive one-stop course in three key programming languages, C++, Java and Octave (a freeware alternative to MATLAB). Employing only public-domain software, this book presents a unique overview of numerical and programming techniques, including object-oriented programming, elementary and advanced topics in numerical analysis, physical system modelling, scientific graphics, software engineering and performance issues. Compact, transparent code in all three programming languages is applied to the fundamental equations of quantum mechanics, electromagnetics, mechanics and statistical mechanics. Uncommented versions of the code that can be immediately modified and adapted are provided online for the more involved programs. This compact, practical text is an invaluable introduction for students in all undergraduate- and graduate-level courses in the physical sciences or engineering that require numerical modelling, and also a key reference for instructors and scientific programmers.
This book is for a general scientific and engineering audience as a guide to current ideas, methods, and models for stochastic modeling of microstructures. It is a reference for professionals in material modeling, mechanical engineering, materials science, chemical, civil, environmental engineering and applied mathematics.
Provides a concise overview of the core undergraduate physics and applied mathematics curriculum for students and practitioners of science and engineering Fundamental Math and Physics for Scientists and Engineers summarizes college and university level physics together with the mathematics frequently encountered in engineering and physics calculations. The presentation provides straightforward, coherent explanations of underlying concepts emphasizing essential formulas, derivations, examples, and computer programs. Content that should be thoroughly mastered and memorized is clearly identified while unnecessary technical details are omitted. Fundamental Math and Physics for Scientists and Engineers is an ideal resource for undergraduate science and engineering students and practitioners, students reviewing for the GRE and graduate-level comprehensive exams, and general readers seeking to improve their comprehension of undergraduate physics. Covers topics frequently encountered in undergraduate physics, in particular those appearing in the Physics GRE subject examination Reviews relevant areas of undergraduate applied mathematics, with an overview chapter on scientific programming Provides simple, concise explanations and illustrations of underlying concepts Succinct yet comprehensive, Fundamental Math and Physics for Scientists and Engineers constitutes a reference for science and engineering students, practitioners and non-practitioners alike.
Suitable for advanced undergraduates and graduate students of physics, this uniquely comprehensive overview provides a rigorous, integrated treatment of physical principles and techniques related to gases, liquids, solids, and their phase transitions. 1975 edition.
The theory of statistical mechanics is the best link we have between the imperceptible world of atoms and molecules and our common macroscopic experience. This textbook provides the fundamental rules and relationships of statistical mechanics. Through it, students will learn how to deduce the properties of materials from an underlying understanding of the behaviour of its constituent building blocks. The textbook covers the basics of systems at rest, as well as those directly manipulated. The former, also known as equilibrium statistical mechanics, is reviewed in the context of recent results in probability theory, with emphasis on solvation phenomena and phase transitions. The latter, nonequilibrium statistical mechanics, has seen tremendous advancement in the last few years, and is integrated into a textbook for the first time. These latter chapters emphasize rates of rare events like chemical reactions as well as single molecule experiments. Throughout the book, distinctions between heat and work, as well as notions of trajectory ensembles reflect the incorporation of stochastic thermodynamics into the modern language of statistical mechanics. Ideas of scaling, the concentration of measures, and generalized theories of ensemble equivalence represent the important contribution of the mathematics of large deviations.
This book provides a broad introductory survey of this remarkable field, aiming to establish and clearly differentiate its physical principles, and also to provide a snapshot portrait of many of the most prominent current applications. Primary emphasis is placed on developing an understanding of the fundamental photonic origin behind the mechanism that operates in each type of effect. To this end, the first few chapters introduce and develop core theory, focusing on the physical significance and source of the most salient parameters, and revealing the detailed interplay between the key material and optical properties. Where appropriate, both classical and photonic (quantum mechanical) representations are discussed. The number of equations is purposely kept to a minimum, and only a broad background in optical physics is assumed. With copious examples and illustrations, each of the subsequent chapters then sets out to explain and exhibit the main features and uses of the various distinct types of mechanism that can be involved in optical nanomanipulation, including some of the very latest developments. To complete the scene, we also briefly discuss applications to larger, biological particles. Overall, this book aims to deliver to the non-specialist an amenable introduction to the technically more advanced literature on individual manipulation methods. Full references to the original research papers are given throughout, and an up-to-date bibliography is provided for each chapter, which directs the reader to other selected, more specialised sources.
Complete and comprehensive application-focused reference on millimetre wave antennas Millimetre Wave Antennas for Gigabit Wireless Communications covers a vast wealth of material with a strong focus on the current design and analysis principles of millimetre wave antennas for wireless devices. It provides practising engineers with the design rules and considerations required in designing antennas for the terminal. The authors include coverage of new configurations with advanced angular and frequency filtering characteristics, new design and analysis techniques, and methods for filter miniaturization. The book reviews up-to-date research results and utilizes numerous design examples to emphasize computer analysis and synthesis whilst also discussing the applications of commercially available software. Key Features: Advanced and up-to-date treatment of one of the fastest growing fields of wireless communications Covers topics such as Gigabit wireless communications and its required antennas, passive and active antenna design and analysis techniques, multibeam antennas and MIMO, IEEE 802.15.3c, WiMedia®, and advanced materials and technologies Offers a practical guide to integrated antennas for specific configurations requirements Addresses a number of complex, real-world problems that system and antenna engineers are going to face in millimetre-wave communications industry and provides solutions Contains detailed design examples, drawings and predicted performance This book is an invaluable tool for antenna professionals (engineers, designers, and developers), microwave professionals, wireless communication system professionals, and industries with microwave and millimetre wave research projects. Advanced students and researchers working in the field of millimetre wave engineering will also find this book very useful.
Liquid crystals are partially ordered systems without a rigid, long-range structure. The study of these materials covers a wide area: chemical structure, physical properties and technical applications. Due to their dual nature -- anisotropic physical properties of solids and rheological behavior of liquids -- and easy response to externally applied electric, magnetic, optical and surface fields liquid crystals are of greatest potential for scientific and technological applications. The subject has come of age and has achieved the status of being a very exciting interdisciplinary field of scientific and industrial research. This book is an outgrowth of the enormous advances made during the last three decades in both our understanding of liquid crystals and our ability to use them in applications. It presents a systematic, self-contained and up-to-date overview of the structure and properties of liquid crystals. It will be of great value to graduates and research workers in condensed matter physics, chemical physics, biology, materials science, chemical and electrical engineering, and technology from a materials science and physics viewpoint of liquid crystals.
As Chairmen of the Electrochemistry and Molten Salts Discussion Groups of the Chemical Society, it gave us great pleasure to welcome the confer ence Highly Concentrated Aqueous Solutions and Molten Salts, which our Groups cosponsored, at St. John's College, Oxford in July 1978. During the meeting the editors of the present volume, and those giving lectures, came to the conclusion that the verbal presentations deserved to be expanded and to be more widely disseminated in a permanent form. Thus the articles which appear in this volume were commissioned and prepared. A greater exchange of information between aqueous chemists and those concerned with molten salts is to be welcomed and to this end the present volume aims to focus attention on the borderline areas between the two in an attempt to facilitate a wider awareness of the concepts and methods appropriate to the respective specialities. Similarly, and parti cularly in the electrochemical field, a greater exchange of information be tween the academic and industrial practitioners of the subject is desirable. T!1e problems involved are not trivial but when the interactions in these largely (but not wholly) ionic liquids are better understood, this wiii surely be to the benefit of all concerned with solution chemistry. Douglas Inman, Imperial College Chairman, Electrochemistry Group David Kerridge, University of Southampton Chairman, Molten Salts Discussion Group v Preface A number of recent events led to the appearance of this text at this particu lar time.
A concise, comprehensive one-stop overview of three key programming languages, C++, Java and Octave, for students, instructors and scientific programmers.
Provides a concise overview of the core undergraduate physics and applied mathematics curriculum for students and practitioners of science and engineering Fundamental Math and Physics for Scientists and Engineers summarizes college and university level physics together with the mathematics frequently encountered in engineering and physics calculations. The presentation provides straightforward, coherent explanations of underlying concepts emphasizing essential formulas, derivations, examples, and computer programs. Content that should be thoroughly mastered and memorized is clearly identified while unnecessary technical details are omitted. Fundamental Math and Physics for Scientists and Engineers is an ideal resource for undergraduate science and engineering students and practitioners, students reviewing for the GRE and graduate-level comprehensive exams, and general readers seeking to improve their comprehension of undergraduate physics. Covers topics frequently encountered in undergraduate physics, in particular those appearing in the Physics GRE subject examination Reviews relevant areas of undergraduate applied mathematics, with an overview chapter on scientific programming Provides simple, concise explanations and illustrations of underlying concepts Succinct yet comprehensive, Fundamental Math and Physics for Scientists and Engineers constitutes a reference for science and engineering students, practitioners and non-practitioners alike.
Building on his highly successful textbook on C++, David Yevick provides a concise yet comprehensive one-stop course in three key programming languages, C++, Java and Octave (a freeware alternative to MATLAB). Employing only public-domain software to ensure straightforward implementation for all readers, this book presents a unique overview of numerical and programming techniques relevant to scientific programming, including object-oriented programming, elementary and advanced topics in numerical analysis, physical system modeling, scientific graphics, software engineering and performance issues. Relevant features of each programming language are illustrated with short, incisive examples, and the installation and application of the software is described in detail. Compact, transparent code in all three programming languages is applied to the fundamental equations of quantum mechanics, electromagnetics, mechanics and statistical mechanics. Uncommented versions of the code that can be immediately modified and adapted are provided online for the more involved programs. This compact, practical text is an invaluable introduction for students in all undergraduate- and graduate-level courses in the physical sciences or engineering that require numerical modeling, and also a key reference for instructors and scientific programmers"--
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.