This book concerns digital communication. Specifically, we treat the transport of bit streams from one geographical location to another over various physical media, such as wire pairs, coaxial cable, optical fiber, and radio waves. Further, we cover the mul tiplexing, multiple access, and synchronization issues relevant to constructing com munication networks that simultaneously transport bit streams from many users. The material in this book is thus directly relevant to the design of a multitude of digital communication systems, including for example local and metropolitan area data net works, voice and video telephony systems, the integrated services digital network (ISDN), computer communication systems, voiceband data modems, and satellite communication systems. We extract the common principles underlying these and other applications and present them in a unified framework. This book is intended for designers and would-be designers of digital communication systems. To limit the scope to manageable proportions we have had to be selective in the topics covered and in the depth of coverage. In the case of advanced information, coding, and detection theory, for example, we have not tried to duplicate the in-depth coverage of many advanced textbooks, but rather have tried to cover those aspects directly relevant to the design of digital communication systems.
This book concerns digital communication. Specifically, we treat the transport of bit streams from one geographical location to another over various physical media, such as wire pairs, coaxial cable, optical fiber, and radio. We also treat multiple-access channels, where there are potentially multiple transmitters and receivers sharing a common medium. Ten years have elapsed since the Second Edition, and there have been remarkable advances in wireless communication, including cellular telephony and wireless local-area networks. This Third Edition expands treatment of communication theories underlying wireless, and especially advanced techniques involving multiple antennas, which tum the traditional single-input single-output channel into a multiple-input multiple-output (MIMO) channel. This is more than a trivial advance, as it stimulates many advanced techniques such as adaptive antennas and coding techniques that take advantage of space as well as time. This is reflected in the addition of two new chapters, one on the theory of MIMO channels, and the other on diversity techniques for mitigating fading. The field of error-control coding has similarly undergone tremendous changes in the past decade, brought on by the invention of turbo codes in 1993 and the subsequent rediscovery of Gallager's low-density parity-check codes. Our treatment of error-control coding has been rewritten to reflect the current state of the art. Other materials have been reorganized and reworked, and three chapters from the previous edition have been moved to the book's Web site to make room.
This book offers non-experts an accessible, thoughtful introduction to the applications and infrastructure in networked computing, providing them with the information to make the right technological and organizational decisions as they work with developers to design or acquire effective computing solutions. The book uses plain English to explain important networked computing terminology and concepts, such as security, middleware, and electronic payments.
This book is for designers and would-be designers of digital communication systems. The general approach of this book is to extract the common principles underlying a range of media and applications and present them in a unified framework. Digital Communication is relevant to the design of a variety of systems, including voice and video digital cellular telephone, digital CATV distribution, wireless LANs, digital subscriber loop, metallic Ethernet, voiceband data modems, and satellite communication systems. New in this Third Edition: New material on recent advances in wireless communications, error-control coding, and multi-user communications has been added. As a result, two new chapters have been added, one on the theory of MIMO channels, and the other on diversity techniques for mitigating fading. Error-control coding has been rewritten to reflect the current state of the art. Chapters 6 through 9 from the Second Edition have been reorganized and streamlined to highlight pulse-amplitude modulation, becoming the new Chapters 5 through 7. Readability is increased by relegating many of the more detailed derivations to appendices and exercise solutions, both of which are included in the book. Exercises, problems, and solutions have been revised and expanded. Three chapters from the previous edition have been moved to the book’s Web site to make room for new material. This book is ideal as a first-year graduate textbook, and is essential to many industry professionals. The book is attractive to both audiences through the inclusion of many practical examples and a practical flavor in the choice of topics. Digital Communication has a Web site at : http://www.ece.gatech.edu/~barry/digital/, where the reader may find additional information from the Second Edition, other supplementary materials, useful links, a problem solutions manual, and errata.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.