The manipulation of electric charge in bulk semiconductors and their heterostructures is the basis of nearly all modern electronic and opto-electronic devices. Recent studies of spin-dependent phenomena in semiconductors open the door to technologies that harness the spin of the electron in semiconductor devices. In addition to providing spin-dependent analogies that extend existing electronic devices into the realm of semiconductor "spintronics," the spin degree of freedom also offers prospects for fundamentally new functionality in the quantum domain, ranging from storage to computation. This is likely to play a crucial role in the information technologies in the 21st century. This book, written by a team of experts, provides an overview of emerging concepts in this rapidly developing field. The topics range from spin transport and injection in semiconductors and their heterostructures to coherent processes and computation in semiconductor quantum structures and microcavities.
Over fifty years have passed since the first patient was treated with fast neutrons, but this form of therapy is still a matter of bitter dispute. Neutron generators have been installed in many countries and now patients can be treated with equipment that is technically similar to modern megavoltage x-ray equipment. The Physics and Radiobiology of Fast Neutron Beams presents a full discussion of the physical and radiobiological factors governing the production and use of fast neutron beams for therapy. The book discusses vastly improved neutron generators, advances in the standardization of dosimetric methods, and the specification of radiation quality. In addition, it explores nuclear methods of analysis, particularly neutron activation analysis in vivo. Influencing the place of radiotherapy with neutrons and other heavy particles, the radiobiological factors governing the treatment of cancer with radiation are examined. The author also studies the radiation hazard of neutrons, a matter of importance in the use of neutrons for chemical analysis in vivo. The Physics and Radiobiology of Fast Neutron Beams will be a valuable introduction to the subject for radiotherapists, medical physicists, radiographers, and radiobiologists new to the field. The book is also a useful summary of current knowledge for those already established in the use of fast neutrons for medical purposes.
This thesis describes the construction of a rotatable spin-polarized electron source and its use in spin- and angle-resolved inverse photoemission to investigate the unoccupied electron states of Tl/Si(111)-(1x1) with special emphasis on their spin texture. Towards more efficient electronics - with the electron spin as information carrier: This motto is the motivation for numerous studies in solid state physics that deal with electron states whose spin degeneracy is lifted by spin-orbit interaction. This thesis addresses the spin-orbit-induced spin textures in momentum space in the surface electronic structure of a prototypical Rashba-type hybrid system: heavy metal thallium on semiconducting silicon. For Tl/Si(111)-(1x1), the thallium adlayer provides surface states with strong spin-orbit interaction and peculiar spin-orbit-induced spin textures: spin rotations and spin chirality in momentum space for unoccupied surface states with giant spin splittings. Almost completely out-of-plane spin-polarized valleys in the vicinity of the Fermi level are identified. As the valley polarization is oppositely oriented at specific points in momentum space, backscattering should be strongly suppressed in this system.
Over the past ten years, on-demand single photon generation has been realized in numerous physical systems including neutral atoms, ions, molecules, semiconductor quantum dots, impurities and defects in solids, and superconductor circuits. The motivations for generation and detection of single photons are two-fold: basic and applied science. On the one hand, a single photon plays a central role in the experimental foundation of quantum mechanics and measurement theory. On the other hand, an efficient and high-quality single-photon source is needed to implement quantum key distribution, quantum repeaters and photonic quantum information processing. Written by top authors from academia and industry, this is the only textbook focused on single-photon devices and thus fills the gap for a readily accessible update on the rapid progress in the field.
A new, comprehensively updated edition of the acclaimed textbook by F.H. Attix (Introduction to Radiological Physics and Radiation Dosimetry) taking into account the substantial developments in dosimetry since its first edition. This monograph covers charged and uncharged particle interactions at a level consistent with the advanced use of the Monte Carlo method in dosimetry; radiation quantities, macroscopic behaviour and the characterization of radiation fields and beams are covered in detail. A number of chapters include addenda presenting derivations and discussions that offer new insight into established dosimetric principles and concepts. The theoretical aspects of dosimetry are given in the comprehensive chapter on cavity theory, followed by the description of primary measurement standards, ionization chambers, chemical dosimeters and solid state detectors. Chapters on applications include reference dosimetry for standard and small fields in radiotherapy, diagnostic radiology and interventional procedures, dosimetry of unsealed and sealed radionuclide sources, and neutron beam dosimetry. The topics are presented in a logical, easy-to-follow sequence and the text is supplemented by numerous illustrative diagrams, tables and appendices. For senior undergraduate- or graduate-level students and professionals.
Over fifteen years ago, because of the tremendous increase in the power and utility of computer simulations, The University of Georgia formed the first institutional unit devoted to the use of simulations in research and teach ing: The Center for Simulational Physics. As the international simulations community expanded further, we sensed a need for a meeting place for both experienced simulators and neophytes to discuss new techniques and recent results in an environment which promoted lively discussion. As a consequence, the Center for Simulational Physics established an annual workshop on Re cent Developments in Computer Simulation Studies in Condensed Matter Physics. This year's workshop was the fifteenth in this series, and the con tinued interest shown by the scientific community demonstrates quite clearly the useful purpose that these meetings have served. The latest workshop was held at The University of Georgia, March 11-15, 2002, and these proceedings provide a "status report" on a number of important topics. This volume is published with the goal of timely dissemination of the material to a wider audience. We wish to offer a special thanks to IBM Corporation and to the National Science Foundation for partial support of this year's workshop. This volume contains both invited papers and contributed presentations on problems in both classical and quantum condensed matter physics. We hope that each reader will benefit from specialized results as well as profit from exposure to new algorithms, methods of analysis, and conceptual devel opments. Athens, GA, USA D. P.
The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.
This book describes modern focused ion beam microscopes and techniques and how they can be used to aid materials metrology and as tools for the fabrication of devices that in turn are used in many other aspects of fundamental metrology. Beginning with a description of the currently available instruments including the new addition to the field of plasma-based sources, it then gives an overview of ion solid interactions and how the different types of instrument can be applied. Chapters then describe how these machines can be applied to the field of materials science and device fabrication giving examples of recent and current activity in both these areas.
One of the first books to thoroughly examine the subject, Quantum Computing Devices: Principles, Designs, and Analysis covers the essential components in the design of a "real" quantum computer. It explores contemporary and important aspects of quantum computation, particularly focusing on the role of quantum electronic devices as quantum gates.
Quantum Mechanics: An Introduction for Device Physicists and Electrical Engineers, Third Edition provides a complete course in quantum mechanics for students of semiconductor device physics and electrical engineering. It provides the necessary background to quantum theory for those starting work on micro- and nanoelectronic structures and is particularly useful for those beginning work with modern semiconductors devices, lasers, and qubits. This book was developed from a course the author has taught for many years with a style and order of presentation of material specifically designed for this audience. It introduces the main concepts of quantum mechanics which are important in everyday solid-state physics and electronics. Each topic includes examples which have been carefully chosen to draw upon relevant experimental research. It also includes problems with solutions to test understanding of theory. Full updated throughout, the third edition contains the latest developments, experiments, and device concepts, in addition to three fully revised chapters on operators and expectations and spin angular momentum, it contains completely new material on superconducting devices and approaches to quantum computing.
With more than 5,000 images and comprehensive illustrations of the entire spectrum of vitreous, retina, and macula disorders, The Retinal Atlas, 2nd Edition, is an indispensable reference for retina specialists and comprehensive ophthalmologists as well as residents and fellows in training. For this edition, an expanded author team made up of Drs. K. Bailey Freund, David Sarraf, William F. Mieler, and Lawrence A. Yannuzzi, each an expert in retinal research and imaging, provide definitive up-to-date perspectives in this rapidly advancing field. This award-winning title has been thoroughly updated with new images with multimodal illustrations, new coverage and insight into key topics, and new disorders and classifications making it the most useful and most complete atlas of its kind. - Provides a complete visual guide to advanced retinal imaging and diagnosis of the full spectrum of retinal diseases, including early and later stages of disease. - Enhances understanding by presenting comparison imaging modalities, composite layouts, high-power views, panoramic disease visuals, and selected magnified areas to hone in on key findings and disease patterns. - Features color coding for different imaging techniques, as well as user-friendly arrows, labels, and magnified images that point to key lesions and intricacies. - Covers all current retinal imaging methods including: optical coherence tomography (OCT), indocyanine green angiography, fluorescein angiography, and fundus autofluorescence. - Depicts and explains expanding OCT uses, including spectral domain and en face OCT, and evolving retinal imaging modalities such as ultra-wide-field fundus photography, angiography and autofluorescence. - Presents a select team of experts, all of whom are true international leaders in retinal imaging, and have assisted in contributing to the diverse library of common and rare case illustrations. - eBook version included with purchase. This enhanced eBook experience allows you to search all of the text, figures, and references from the book on a variety of devices.
Praised by JAMA as "The most complete description of the development, structure, function, pathophysiology, and treatment of the retina and its diseases to be found anywhere," this monumental three-volume work puts all of today's scientific and clinical knowledge of the retina at readers' fingertips. The New Edition has been comprehensively updated and reorganized to reflect all of the very latest scientific and genetic discoveries, diagnostic imaging methods, drug therapies, treatment recommendations, and surgical techniques. The result is an indispensable reference and diagnostic tool for generalists and specialists alike. Delivers the editorial expertise of four highly respected authorities, as well as contributions from internationally recognized leaders in visual science, ophthalmology, and vitreoretinal studies. Presents more than 3,400 superb illustrations (2,200 in full color) that capture all forms of retinal disease from every perspective. Offers the very latest information on the genetic basis of retinal disease, diagnostic retinal imaging, photodynamic therapy, and age-related macular degeneration. Examines the most recent advances in diagnostic indocyanine green angiography � optical coherence tomography (OCT) and quantitative fluoroscein angiography � macular translocation with 360� peripheral retinectomy � surgery for diffuse macular edema due to multiple causes, including proliferative vitreoretinopathy � artificial vision � and much more. Features a completely restructured section on age-related macular degeneration that includes epidemiology and risk factors � prophylaxis and prevention knowledge gained from large clinical trials like AREDS � proven and experimental treatments for AMD � and pharmacotherapy. Incorporates a multitude of new full-color images, 2200 in all.
Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.
Volume 2: Physical Properties of Nanostructured Materials and Their Applications of Nanotechnology: The Physics of Nanomaterials (2-volume set) provides a good overview of the main techniques of the working principles and the type of structures that can be produced with nanomaterials. Specifically, Volume 2 discusses the mechanical, electrical, and optical properties of nanostructures as well as nanomagnetism, spintronics, spin dynamics, as well as a broad range of applications to illustrate how the physical properties of materials can be manipulated to perform very specific functions. Nanotechnology: The Physics of Nanomaterials (2-volume set) is a comprehensive guide to the various aspects of nanophysics. The author’s microscopic approach illustrates how physical principles can be used to understand the basic properties and functioning of low-dimensional systems. It provides an in-depth introduction to the techniques of production and analysis of materials at the nanoscopic level. Much of physics is based on our understanding of solid-state physics. These volumes show how limitations of size can give rise to new physical properties and quantum effects, which can be exploited in new applications and devices. Volume 1: The Physics of Surfaces and Nanofabrication Techniques provides a broad introduction to nanophysics and nanotechnologies, and the importance of low-dimensional and surface physics is discussed indepth. Chapters in Volume 1 covers the large range of physical preparation techniques available for the production of nanomaterials and nanostructuring. Key features: Provides a comprehensive treatment of nanoscience, covering all major areas of the physics involved in nanostructures, including sample preparation techniques, characterization methods, physical principles, and applications Presents an introduction and summary to each chapter, highlighting the principal ideas of each chapter in a concise manner Includes revision problems that will allow students to assess their progress at the end of each chapter Incorporates the author’s 25 years research experience Based on a lecture course the author has given over a period of several years, Nanotechnology: The Physics of Nanomaterials includes the benefit of feedback from students, helping to make the subject matter approachable and appealing to newcomers and students. The volumes will be valuable for courses in nanotechnologies, nanomedicine, nanobiotechnologies and more.
The manipulation of electric charge in bulk semiconductors and their heterostructures is the basis of nearly all modern electronic and opto-electronic devices. Recent studies of spin-dependent phenomena in semiconductors open the door to technologies that harness the spin of the electron in semiconductor devices. In addition to providing spin-dependent analogies that extend existing electronic devices into the realm of semiconductor "spintronics," the spin degree of freedom also offers prospects for fundamentally new functionality in the quantum domain, ranging from storage to computation. This is likely to play a crucial role in the information technologies in the 21st century. This book, written by a team of experts, provides an overview of emerging concepts in this rapidly developing field. The topics range from spin transport and injection in semiconductors and their heterostructures to coherent processes and computation in semiconductor quantum structures and microcavities.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.