Mathematics of Planet Earth (MPE) was started and continues to be consolidated as a collaboration of mathematical science organisations around the world. These organisations work together to tackle global environmental, social and economic problems using mathematics.This textbook introduces the fundamental topics of MPE to advanced undergraduate and graduate students in mathematics, physics and engineering while explaining their modern usages and operational connections. In particular, it discusses the links between partial differential equations, data assimilation, dynamical systems, mathematical modelling and numerical simulations and applies them to insightful examples.The text also complements advanced courses in geophysical fluid dynamics (GFD) for meteorology, atmospheric science and oceanography. It links the fundamental scientific topics of GFD with their potential usage in applications of climate change and weather variability. The immediacy of examples provides an excellent introduction for experienced researchers interested in learning the scope and primary concepts of MPE.
See also GEOMETRIC MECHANICS — Part II: Rotating, Translating and Rolling (2nd Edition) This textbook introduces the tools and language of modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. It treats the fundamental problems of dynamical systems from the viewpoint of Lie group symmetry in variational principles. The only prerequisites are linear algebra, calculus and some familiarity with Hamilton's principle and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.The ideas and concepts of geometric mechanics are explained in the context of explicit examples. Through these examples, the student develops skills in performing computational manipulations, starting from Fermat's principle, working through the theory of differential forms on manifolds and transferring these ideas to the applications of reduction by symmetry to reveal Lie-Poisson Hamiltonian formulations and momentum maps in physical applications.The many Exercises and Worked Answers in the text enable the student to grasp the essential aspects of the subject. In addition, the modern language and application of differential forms is explained in the context of geometric mechanics, so that the importance of Lie derivatives and their flows is clear. All theorems are stated and proved explicitly.The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. In particular, the role of Noether's theorem about the implications of Lie group symmetries for conservation laws of dynamical systems has been emphasised throughout, with many applications./a
The authors compare classical and quantum dynamics in the quasiclassical region of parameters and under the condition of unstable (chaotic) classical behavior. They estimate the characteristic time-scale at which classical and quantum solutions start to differ significantly. The method is based on exact equations for time-dependent expectation values in boson and spin coherent states, and applies to rather general Hamiltonians with many degrees of freedom. The authors develop a consistent dynamical theory for quantum nonintegrable Hamiltonians and provide explicit examples of classical-quantum "crossover-time", a very common and fundamental phenomenon in quantum nonintegrable systems. This book can be recommended to graduate students and to specialists.
Introduces the tools and language of modern geometric mechanics to advanced undergraduate and beginning graduate students in mathematics, physics, and engineering. This book treats the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint, by formulating their solutions as coadjoint motions generated by Lie groups.
See also GEOMETRIC MECHANICS — Part I: Dynamics and Symmetry (2nd Edition) This textbook introduces modern geometric mechanics to advanced undergraduates and beginning graduate students in mathematics, physics and engineering. In particular, it explains the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint by formulating their solutions as coadjoint motions generated by Lie groups. The only prerequisites are linear algebra, multivariable calculus and some familiarity with Euler-Lagrange variational principles and canonical Poisson brackets in classical mechanics at the beginning undergraduate level.The book uses familiar concrete examples to explain variational calculus on tangent spaces of Lie groups. Through these examples, the student develops skills in performing computational manipulations, starting from vectors and matrices, working through the theory of quaternions to understand rotations, then transferring these skills to the computation of more abstract adjoint and coadjoint motions, Lie-Poisson Hamiltonian formulations, momentum maps and finally dynamics with nonholonomic constraints.The organisation of the first edition has been preserved in the second edition. However, the substance of the text has been rewritten throughout to improve the flow and to enrich the development of the material. Many worked examples of adjoint and coadjoint actions of Lie groups on smooth manifolds have also been added and the enhanced coursework examples have been expanded. The second edition is ideal for classroom use, student projects and self-study./a
This textbook introduces the tools and language of modern geometric mechanics to advanced undergraduate and beginning graduate students in mathematics, physics, and engineering. It treats the dynamics of rotating, spinning and rolling rigid bodies from a geometric viewpoint, by formulating their solutions as coadjoint motions generated by Lie groups. The only prerequisites are linear algebra, multivariable calculus and some familiarity with Euler-Lagrange variational principles and canonical Poisson brackets in classical mechanics at the beginning undergraduate level. Variational calculus on tangent spaces of Lie groups is explained in the context of familiar concrete examples. Through these examples, the student develops skills in performing computational manipulations, starting from vectors and matrices, working through the theory of quaternions to understand rotations, and then transferring these skills to the computation of more abstract adjoint and coadjoint motions, Lie-Poisson Hamiltonian formulations, momentum maps and finally dynamics with nonholonomic constraints. The 120 Exercises and 55 Worked Answers help the student to grasp the essential aspects of the subject, and to develop proficiency in using the powerful methods of geometric mechanics. In addition, all theorems are stated and proved explicitly. The book's many examples and worked exercises make it ideal for both classroom use and self-study. Contents: GalileoNewton, Lagrange, HamiltonQuaternionsQuaternionic ConjugacySpecial Orthogonal GroupThe Special Euclidean GroupGeometric Mechanics on SE(3)Heavy Top EquationsThe Euler–Poincaré TheoremLie–Poisson Hamiltonian FormMomentum MapsRound Rolling Rigid Bodies Readership: Advanced undergraduate and graduate students in mathematics, physics and engineering; researchers interested in learning the basic ideas in the fields; non-experts interested in geometric mechanics, dynamics and symmetry.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.