The U.S. industrial complex and its associated infrastructure are essential to the nation's quality of life, its industrial productivity, international competitiveness, and security. Each component of the infrastructure-such as highways, airports, water supply, waste treatment, energy supply, and power generation-represents a complex system requiring significant investment. Within that infrastructure both the private and government sectors have equipment and facilities that are subject to degradation by corrosion, which significantly reduces the lifetime, reliability, and functionality of structures and equipment, while also threatening human safety. The direct costs of corrosion to the U.S. economy represent 3.2 percent of the gross domestic product (GDP), and the total costs to society can be twice that or greater. Opportunities for savings through improved corrosion control exist in every economic sector. The workshop, Corrosion Education for the 21st Century, brought together corrosion specialists, leaders in materials and engineering education, government officials, and other interested parties. The workshop was also attended by members of NRC's Committee on Assessing Corrosion Education, who are carrying out a study on this topic. The workshop panelists and speakers were asked to give their personal perspectives on whether corrosion abatement is adequately addressed in our nation's engineering curricula and, if not, what issues need to be addressed to develop a comprehensive corrosion curriculum in undergraduate engineering. This proceedings consists of extended abstracts from the workshop's speakers that reflect their personal views as presented to the meeting. Proceedings of the Materials Forum 2007: Corrosion Education for the 21st Century summarizes this form.
The threat from the degradation of materials in the engineered products that drive our economy, keep our citizenry healthy, and keep us safe from terrorism and belligerent threats has been well documented over the years. And yet little effort appears to have been made to apply the nation's engineering community to developing a better understanding of corrosion and the mitigation of its effects. The engineering workforce must have a solid understanding of the physical and chemical bases of corrosion, as well as an understanding of the engineering issues surrounding corrosion and corrosion abatement. Nonetheless, corrosion engineering is not a required course in the curriculum of most bachelor degree programs in MSE and related engineering fields, and in many programs, the subject is not even available. As a result, most bachelor-level graduates of materials- and design-related programs have an inadequate background in corrosion engineering principles and practices. To combat this problem, the book makes a number of short- and long-term recommendations to industry and government agencies, educational institutions, and communities to increase education and awareness, and ultimately give the incoming workforce the knowledge they need.
The field of corrosion science and engineering is on the threshold of important advances. Advances in lifetime prediction and technological solutions, as enabled by the convergence of experimental and computational length and timescales and powerful new modeling techniques, are allowing the development of rigorous, mechanistically based models from observations and physical laws. Despite considerable progress in the integration of materials by design into engineering development of products, corrosion considerations are typically missing from such constructs. Similarly, condition monitoring and remaining life prediction (prognosis) do not at present incorporate corrosion factors. Great opportunities exist to use the framework of these materials design and engineering tools to stimulate corrosion research and development to achieve quantitative life prediction, to incorporate state-of-the-art sensing approaches into experimentation and materials architectures, and to introduce environmental degradation factors into these capabilities. Research Opportunities in Corrosion Science and Engineering identifies grand challenges for the corrosion research community, highlights research opportunities in corrosion science and engineering, and posits a national strategy for corrosion research. It is a logical and necessary complement to the recently published book, Assessment of Corrosion Education, which emphasized that technical education must be supported by academic, industrial, and government research. Although the present report focuses on the government role, this emphasis does not diminish the role of industry or academia.
The U.S. industrial complex and its associated infrastructure are essential to the nation's quality of life, its industrial productivity, international competitiveness, and security. Each component of the infrastructure-such as highways, airports, water supply, waste treatment, energy supply, and power generation-represents a complex system requiring significant investment. Within that infrastructure both the private and government sectors have equipment and facilities that are subject to degradation by corrosion, which significantly reduces the lifetime, reliability, and functionality of structures and equipment, while also threatening human safety. The direct costs of corrosion to the U.S. economy represent 3.2 percent of the gross domestic product (GDP), and the total costs to society can be twice that or greater. Opportunities for savings through improved corrosion control exist in every economic sector. The workshop, Corrosion Education for the 21st Century, brought together corrosion specialists, leaders in materials and engineering education, government officials, and other interested parties. The workshop was also attended by members of NRC's Committee on Assessing Corrosion Education, who are carrying out a study on this topic. The workshop panelists and speakers were asked to give their personal perspectives on whether corrosion abatement is adequately addressed in our nation's engineering curricula and, if not, what issues need to be addressed to develop a comprehensive corrosion curriculum in undergraduate engineering. This proceedings consists of extended abstracts from the workshop's speakers that reflect their personal views as presented to the meeting. Proceedings of the Materials Forum 2007: Corrosion Education for the 21st Century summarizes this form.
The threat from the degradation of materials in the engineered products that drive our economy, keep our citizenry healthy, and keep us safe from terrorism and belligerent threats has been well documented over the years. And yet little effort appears to have been made to apply the nation's engineering community to developing a better understanding of corrosion and the mitigation of its effects. The engineering workforce must have a solid understanding of the physical and chemical bases of corrosion, as well as an understanding of the engineering issues surrounding corrosion and corrosion abatement. Nonetheless, corrosion engineering is not a required course in the curriculum of most bachelor degree programs in MSE and related engineering fields, and in many programs, the subject is not even available. As a result, most bachelor-level graduates of materials- and design-related programs have an inadequate background in corrosion engineering principles and practices. To combat this problem, the book makes a number of short- and long-term recommendations to industry and government agencies, educational institutions, and communities to increase education and awareness, and ultimately give the incoming workforce the knowledge they need.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.