NASA's Science Mission Directorate (SMD) is engaged in the final stages of a comprehensive, agency-wide effort to develop a new strategic plan at a time when its budget is under considerable stress. SMD's Science Plan serves to provide more detail on its four traditional science disciplines - astronomy and astrophysics, solar and space physics (also called heliophysics), planetary science, and Earth remote sensing and related activities - than is possible in the agency-wide Strategic Plan. Review of the Draft 2014 Science Mission Directorate Science Plan comments on the responsiveness of SMD's Science Plan to the National Research Council's guidance on key science issues and opportunities in recent NRC decadal reports. This study focuses on attention to interdisciplinary aspects and overall scientific balance; identification and exposition of important opportunities for partnerships as well as education and public outreach; and integration of technology development with the science program. The report provides detailed findings and recommendations relating to the draft Science Plan.
NASA's Science Mission Directorate (SMD) is engaged in the final stages of a comprehensive, agency-wide effort to develop a new strategic plan at a time when its budget is under considerable stress. SMD's Science Plan serves to provide more detail on its four traditional science disciplines - astronomy and astrophysics, solar and space physics (also called heliophysics), planetary science, and Earth remote sensing and related activities - than is possible in the agency-wide Strategic Plan. Review of the Draft 2014 Science Mission Directorate Science Plan comments on the responsiveness of SMD's Science Plan to the National Research Council's guidance on key science issues and opportunities in recent NRC decadal reports. This study focuses on attention to interdisciplinary aspects and overall scientific balance; identification and exposition of important opportunities for partnerships as well as education and public outreach; and integration of technology development with the science program. The report provides detailed findings and recommendations relating to the draft Science Plan.
NASA's Science Mission Directorate (SMD) ties together diverse researchers, sponsors, and resources to develop the science community's understanding of the universe. Within scientific organizations like NASA, it is important to establish clear strategies and goals to guide research and foster new discoveries across varying missions. SMD created a draft for their 2019 Science Plan, and a review of this draft is necessary to ensure that the plan establishes clear, attainable, relevant, and ambitious goals. Review of the Draft 2019 Science Mission Directorate Science Plan provides comments on and recommendations for SMD's draft. Comments in this report focus on the level of ambition of the specified strategies in light of current and emerging opportunities to advance Earth and space science over the next 5 years, the ability of SMD to meet the science objectives in the most recent decadal surveys through implementation of specified strategies, additional strategies for SMD's considerations, and the general readability and clarity of the draft. Recommendations in this report identify important improvements for the 2019 Science Plan.
NASA's space and Earth science program is composed of two principal components: spaceflight projects and mission-enabling activities. Most of the budget of NASA's Science Mission Directorate (SMD) is applied to spaceflight missions, but NASA identifies nearly one quarter of the SMD budget as "mission enabling." The principal mission-enabling activities, which traditionally encompass much of NASA's research and analysis (R&A) programs, include support for basic research, theory, modeling, and data analysis; suborbital payloads and flights and complementary ground-based programs; advanced technology development; and advanced mission and instrumentation concept studies. While the R&A program is essential to the development and support of NASA's diverse set of space and Earth science missions, defining and articulating an appropriate scale for mission-enabling activities have posed a challenge throughout NASA's history. This volume identifies the appropriate roles for mission-enabling activities and metrics for assessing their effectiveness. Furthermore, the book evaluates how, from a strategic perspective, decisions should be made about balance between mission-related and mission-enabling elements of the overall program as well as balance between various elements within the mission-enabling component. Collectively, these efforts will help SMD to make a good program even better.
In recent years, planetary science has seen a tremendous growth in new knowledge. Deposits of water ice exist at the Moon's poles. Discoveries on the surface of Mars point to an early warm wet climate, and perhaps conditions under which life could have emerged. Liquid methane rain falls on Saturn's moon Titan, creating rivers, lakes, and geologic landscapes with uncanny resemblances to Earth's. Vision and Voyages for Planetary Science in the Decade 2013-2022 surveys the current state of knowledge of the solar system and recommends a suite of planetary science flagship missions for the decade 2013-2022 that could provide a steady stream of important new discoveries about the solar system. Research priorities defined in the report were selected through a rigorous review that included input from five expert panels. NASA's highest priority large mission should be the Mars Astrobiology Explorer Cacher (MAX-C), a mission to Mars that could help determine whether the planet ever supported life and could also help answer questions about its geologic and climatic history. Other projects should include a mission to Jupiter's icy moon Europa and its subsurface ocean, and the Uranus Orbiter and Probe mission to investigate that planet's interior structure, atmosphere, and composition. For medium-size missions, Vision and Voyages for Planetary Science in the Decade 2013-2022 recommends that NASA select two new missions to be included in its New Frontiers program, which explores the solar system with frequent, mid-size spacecraft missions. If NASA cannot stay within budget for any of these proposed flagship projects, it should focus on smaller, less expensive missions first. Vision and Voyages for Planetary Science in the Decade 2013-2022 suggests that the National Science Foundation expand its funding for existing laboratories and establish new facilities as needed. It also recommends that the program enlist the participation of international partners. This report is a vital resource for government agencies supporting space science, the planetary science community, and the public.
NASA's Science Mission Directorate (SMD) currently operates over five dozen missions, with approximately two dozen additional missions in development. These missions span the scientific fields associated with SMD's four divisionsâ€"Astrophysics, Earth Science, Heliophysics, and Planetary Sciences. Because a single mission can consist of multiple spacecraft, NASA-SMD is responsible for nearly 100 operational spacecraft. The most high profile of these are the large strategic missions, often referred to as "flagships." Large strategic missions are essential to maintaining the global leadership of the United States in space exploration and in science because only the United States has the budget, technology, and trained personnel in multiple scientific fields to conduct missions that attract a range of international partners. This report examines the role of large, strategic missions within a balanced program across NASA-SMD space and Earth sciences programs. It considers the role and scientific productivity of such missions in advancing science, technology and the long-term health of the field, and provides guidance that NASA can use to help set the priority of larger missions within a properly balanced program containing a range of mission classes.
NASA's space and Earth science program is composed of two principal components: spaceflight projects and mission-enabling activities. Most of the budget of NASA's Science Mission Directorate (SMD) is applied to spaceflight missions, but NASA identifies nearly one quarter of the SMD budget as "mission enabling." The principal mission-enabling activities, which traditionally encompass much of NASA's research and analysis (R&A) programs, include support for basic research, theory, modeling, and data analysis; suborbital payloads and flights and complementary ground-based programs; advanced technology development; and advanced mission and instrumentation concept studies. While the R&A program is essential to the development and support of NASA's diverse set of space and Earth science missions, defining and articulating an appropriate scale for mission-enabling activities have posed a challenge throughout NASA's history. This volume identifies the appropriate roles for mission-enabling activities and metrics for assessing their effectiveness. Furthermore, the book evaluates how, from a strategic perspective, decisions should be made about balance between mission-related and mission-enabling elements of the overall program as well as balance between various elements within the mission-enabling component. Collectively, these efforts will help SMD to make a good program even better.
NASA operates a large number of space science missions, approximately three-quarters of which are currently in their extended operations phase. They represent not only a majority of operational space science missions, but a substantial national investment and vital national assets. They are tremendously scientifically productive, making many of the major discoveries that are reported in the media and that rewrite textbooks. Extending Science â€" NASA's Space Science Mission Extensions and the Senior Review Process evaluates the scientific benefits of missions extensions, the current process for extending missions, the current biennial requirement for senior reviews of mission extensions, the balance between starting new missions and extending operating missions, and potential innovative cost-reduction proposals for extended missions, and makes recommendations based on this review.
The National Aeronautics and Space Administration (NASA) is one of the United States' leading federal science, technology, engineering, and mathematics (STEM) agencies and plays an important role in the landscape of STEM education. In 2015, NASA's Science Mission Directorate (SMD) created the Science Activation (SciAct) program to increase the overall coherence of SMD's education efforts, to support more effective, sustainable, and efficient use of SMD science discoveries for education, and to enable NASA scientists and engineers to engage more effectively and efficiently in the STEM learning environment with learners of all ages. SciAct is now transitioning into its second round of funding, and it is beneficial to review the program's portfolio and identify opportunities for improvement. NASA's Science Activation Program: Achievements and Opportunities assesses SciAct's efforts towards meeting its goals. The key objectives of SciAct are to enable STEM education, improve U.S. scientific literacy, advance national education goals, and leverage efforts through partnerships. This report describes and assesses the history, current status, and vision of the program and its projects. It also provides recommendations to enhance NASA's efforts through the SciAct program.
On December 2-3, 2014, the Space Studies Board and the Board on Science Education of the National Research Council held a workshop on the NASA Science Mission Directorate (SMD) education program - "Sharing the Adventure with the Student." The workshop brought together representatives of the space science and science education communities to discuss maximizing the effectiveness of the transfer of knowledge from the scientists supported by NASA's SMD to K-12 students directly and to teachers and informal educators. The workshop focused not only on the effectiveness of recent models for transferring science content and scientific practices to students, but also served as a venue for dialogue between education specialists, education staff from NASA and other agencies, space scientists and engineers, and science content generators. Workshop participants reviewed case studies of scientists or engineers who were able to successfully translate their research results and research experiences into formal and informal student science learning. Education specialists shared how science can be translated to education materials and directly to students, and teachers shared their experiences of space science in their classrooms. Sharing the Adventure with the Student is the summary of the presentation and discussions of the workshop.
NASAâe(tm)s Science Mission Directorate (SMD) currently operates over five dozen missions, with approximately two dozen additional missions in development. These missions span the scientific fields associated with SMDâe(tm)s four divisionsâe"Astrophysics, Earth Science, Heliophysics, and Planetary Sciences. Because a single mission can consist of multiple spacecraft, NASA-SMD is responsible for nearly 100 operational spacecraft. The most high profile of these are the large strategic missions, often referred to as âeoeflagships.âe Large strategic missions are essential to maintaining the global leadership of the United States in space exploration and in science because only the United States has the budget, technology, and trained personnel in multiple scientific fields to conduct missions that attract a range of international partners. This report examines the role of large, strategic missions within a balanced program across NASA-SMD space and Earth sciences programs. It considers the role and scientific productivity of such missions in advancing science, technology and the long-term health of the field, and provides guidance that NASA can use to help set the priority of larger missions within a properly balanced program containing a range of mission classes.
Modern science is ever more driven by computations and simulations. In particular, the state of the art in space and Earth science often arises from complex simulations of climate, space weather, and astronomical phenomena. At the same time, scientific work requires data processing, presentation, and analysis through broadly available proprietary and community software.1 Implicitly or explicitly, software is central to science. Scientific discovery, understanding, validation, and interpretation are all enhanced by access to the source code of the software used by scientists. This report investigates and recommends options for NASA's Science Mission Directorate (SMD) as it considers how to establish a policy regarding open source software to complement its existing policy on open data. In particular, the report reviews existing data and software policies and the lessons learned from the implementation of those policies, summarizes community perspectives, and presents policy options and recommendations for implementing an open source software policy for NASA SMD.
When the space exploration initiative was announced, Congress asked the NRC to review the science NASA proposed to carryout under the initiative. It also asked the NRC to assess whether this program would provide balanced scientific research across the established disciplines supported by NASA in addition to supporting the new initiative. In 2005, the NRC released three studies focusing on a portion of that task, but changes at NASA forced the postponement of the last phase. This report presents that last phase with an assessment of the health of the NASA scientific disciplines under the budget requests imposed by the exploration initiative. The report also provides an analysis of whether the science budget appropriately reflects cross-disciplinary scientific priorities.
On December 11, 2017, President Donald Trump signed Space Policy Directive-1 (SPD-1). The new directive replaced original text in the National Space Policy of the United States of America and instructed the Administrator of the National Aeronautics and Space Administration (NASA) to "lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations". In response to and in support of the vision expressed in SPD-1, this report reviews decadal and other community-guided lunar science priorities as context for NASA's current lunar plans and then presents and evaluates the actions being taken by NASA's Planetary Science Division to support lunar science.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.