Historically, regulations governing chemical use have often focused on widely used chemicals and acute human health effects of exposure to them, as well as their potential to cause cancer and other adverse health effects. As scientific knowledge has expanded there has been an increased awareness of the mechanisms through which chemicals may exert harmful effects on human health, as well as their effects on other species and ecosystems. Identification of high-priority chemicals and other chemicals of concern has prompted a growing number of state and local governments, as well as major companies, to take steps beyond existing hazardous chemical federal legislation. Interest in approaches and policies that ensure that any new substances substituted for chemicals of concern are assessed as carefully and thoroughly as possible has also burgeoned. The overarching goal of these approaches is to avoid regrettable substitutions, which occur when a toxic chemical is replaced by another chemical that later proved unsuitable because of persistence, bioaccumulation, toxicity, or other concerns. Chemical alternative assessments are tools designed to facilitate consideration of these factors to assist stakeholders in identifying chemicals that may have the greatest likelihood of harm to human and ecological health, and to provide guidance on how the industry may develop and adopt safer alternatives. A Framework to Guide Selection of Chemical Alternatives develops and demonstrates a decision framework for evaluating potentially safer substitute chemicals as primarily determined by human health and ecological risks. This new framework is informed by previous efforts by regulatory agencies, academic institutions, and others to develop alternative assessment frameworks that could be operationalized. In addition to hazard assessments, the framework incorporates steps for life-cycle thinking - which considers possible impacts of a chemical at all stages including production, use, and disposal - as well as steps for performance and economic assessments. The report also highlights how modern information sources such as computational modeling can supplement traditional toxicology data in the assessment process. This new framework allows the evaluation of the full range of benefits and shortcomings of substitutes, and examination of tradeoffs between these risks and factors such as product functionality, product efficacy, process safety, and resource use. Through case studies, this report demonstrates how different users in contrasting decision contexts with diverse priorities can apply the framework. This report will be an essential resource to the chemical industry, environmentalists, ecologists, and state and local governments.
To safeguard public health, the US Environmental Protection Agency (EPA) must keep abreast of new scientific information and emerging technologies so that it can apply them to regulatory decision-making. For decades the agency has dealt with questions about what animal-testing data to use to make predictions about human health hazards, how to perform dose-response extrapolations, how to identify and protect susceptible subpopulations, and how to address uncertainties. As alternatives to traditional toxicity testing have emerged, the agency has been faced with additional questions about how to incorporate data from such tests into its chemical assessments and whether such tests can replace some traditional testing methods. Endocrine active chemicals (EACs) have raised concerns that traditional toxicity-testing protocols might be inadequate to identify all potential hazards to human health because they have the ability to modulate normal hormone function, and small alterations in hormone concentrations, particularly during sensitive life stages, can have lasting and significant effects. To address concerns about potential human health effects from EACs at low doses, this report develops a strategy to evaluate the evidence for such low-dose effects.
The US Department of Defense (DOD) is faced with an overwhelming task in evaluating chemicals that could potentially pose a threat to its deployed personnel. There are over 84,000 registered chemicals, and testing them with traditional toxicity-testing methods is not feasible in terms of time or money. In recent years, there has been a concerted effort to develop new approaches to toxicity testing that incorporate advances in systems biology, toxicogenomics, bioinformatics, and computational toxicology. Given the advances, DOD asked the National Research Council to determine how DOD could use modern approaches for predicting chemical toxicity in its efforts to prevent debilitating, acute exposures to deployed personnel. This report provides an overall conceptual approach that DOD could use to develop a predictive toxicology system. Application of Modern Toxicology Approaches for Predicting Acute Toxicity for Chemical Defense reviews the current state of computational and high-throughput approaches for predicting acute toxicity and suggests methods for integrating data and predictions. This report concludes with lessons learned from current high-throughput screening programs and suggests some initial steps for DOD investment.
With the responsibility to ensure the safety of food, drugs, and other products, the U.S. Food and Drug Administration (FDA) faces decisions that may have public-health consequences every day. Often the decisions must be made quickly and on the basis of incomplete information. FDA recognized that collecting and evaluating information on the risks posed by the regulated products in a systematic manner would aid in its decision-making process. Consequently, FDA and the Department of Health and Human Services (DHHS) asked the National Research Council (NRC) to develop a conceptual model that could evaluate products or product categories that FDA regulates and provide information on the potential health consequences associated with them. A Risk-Characterization Framework for Decision-Making at the Food and Drug Administration describes the proposed risk-characterization framework that can be used to evaluate, compare, and communicate the public-health consequences of decisions concerning a wide variety of products. The framework presented in this report is intended to complement other risk-based approaches that are in use and under development at FDA, not replace them. It provides a common language for describing potential public-health consequences of decisions, is designed to have wide applicability among all FDA centers, and draws extensively on the well-vetted risk literature to define the relevant health dimensions for decision-making at the FDA. The report illustrates the use of that framework with several case studies, and provides conclusions and recommendations.
In response to a congressional mandate, this book examines whether knowing the amounts of toxic substances entering and leaving manufacturing facilities is useful in evaluating chemical releases to the environment, waste reduction progress, and chemical management practices. Tracking of these substances with rigorous engineering data is compared with a less resource-intensive alternative to determine the feasibility and potential usefulness to the public and the government.
The regulation of potentially hazardous substances has become a controversial issue. This volume evaluates past efforts to develop and use risk assessment guidelines, reviews the experience of regulatory agencies with different administrative arrangements for risk assessment, and evaluates various proposals to modify procedures. The book's conclusions and recommendations can be applied across the entire field of environmental health.
Like many other agencies of the federal government, the Food and Drug Administration (FDA) relies extensively on external advisory committees for independent scientific and technical advice. Recognizing that the existing advisory committee system is essentially sound, this volume recommends ways of enhancing the use of these committees in the evaluation of drugs, biological materials, and medical devices; strengthening the agency's management of the system; and increasing the accountability of the system to the public. In doing so, it examines and makes recommendations on such issues as the recruitment of committee members, the FDA's management of financial conflict of interest and intellectual bias among members, and the operations and management of the advisory committee system.
Americans drink many gallons of tap water every day, but many of them question the safety of tap water every day as well. In fact, devices have been created to filter tap water directly before reaching cups. It's true; however, that the provision and management of safe drinking water throughout the United States have seen triumphs in public health since the beginning of the 20th century. Although, advances in water treatment, source water protection efforts, and the presence of local, state, and federal regulatory protection have developed over the years, water in the United States still contain chemical, microbiological, and other types of contaminants at detectable and at times harmful levels. This in addition to the growth of microbial pathogens that can resist traditional water treatment practices have led to the question: Where and how should the U.S. government focus its attention and limited resources to ensure safe drinking water supplies for the future? To deal with these issues the Safe Drinking Water Act (SDWA) Amendments of 1996 Safe included a request that the U.S. Environmental Protection Agency (EPA) publish a list of unregulated chemical and microbial contaminants and contaminant groups every five years that are or could pose risks in the drinking water of public water systems. The first list, called the Drinking Water Contaminant Candidate List (CCL), was published in March 1998. The main function of the CCL is to provide the basis for deciding whether to regulate at least five new contaminants from the CCL every five years. However, since additional research and monitoring need to be conducted for most of the contaminants on the 1998 CCL, the list is also used to prioritize these related activities. Classifying Drinking Water Contaminants for Regulatory Consideration is the third report by the Committee on Dinking Water Contaminants with the purpose of providing advice regarding the setting of priorities among drinking water contaminants in order to identify those contaminants that pose the greatest threats to public health. The committee is comprised of 14 volunteer experts in water treatment engineering, toxicology, public health, epidemiology, water and analytical chemistry, risk assessment, risk communication, public water system operations, and microbiology and is jointly overseen by the National Research Council's (NRC'S) Water Science and Technology Board and Board on Environmental Studies and Toxicology. In this report the committee needed to readdress its second report as well as explore the feasibility of developing and using mechanisms for identifying emerging microbial pathogens for research and regulatory activities. The promotion of public health remains the guiding principle of the committee's recommendations and conclusions in this report.
Potential benefits from the use of genetically modified organismsâ€"such as bacteria that biodegrade environmental pollutantsâ€"are enormous. To minimize the risks of releasing such organisms into the environment, regulators are working to develop rational safeguards. This volume provides a comprehensive examination of the issues surrounding testing these organisms in the laboratory or the field and a practical framework for making decisions about organism release. Beginning with a discussion of classical versus molecular techniques for genetic alteration, the volume is divided into major sections for plants and microorganisms and covers the characteristics of altered organisms, past experience with releases, and such specific issues as whether plant introductions could promote weediness. The executive summary presents major conclusions and outlines the recommended decision-making framework.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.