In 1999 the National Academies of Sciences, Engineering, and Medicine released a landmark report, Our Common Journey: A Transition toward Sustainability, which attempted to "reinvigorate the essential strategic connections between scientific research, technological development, and societies' efforts to achieve environmentally sustainable improvements in human well-being."1 The report emphasized the need for place-based and systems approaches to sustainability, proposed a research strategy for using scientific and technical knowledge to better inform the field, and highlighted a number of priorities for actions that could contribute to a sustainable future. The past 15 years have brought significant advances in observational and predictive capabilities for a range of natural and social systems, as well as development of other tools and approaches useful for sustainability planning. In addition, other frameworks for environmental decision making, such as those that focus on climate adaptation or resilience, have become increasingly prominent. A careful consideration of how these other approaches might intersect with sustainability is warranted, particularly in that they may affect similar resources or rely on similar underlying scientific data and models. 
 To further the discussion on these outstanding issues, the National Academies of Sciences, Engineering, and Medicine convened a workshop on January 14â€"15, 2016. Participants discussed progress in sustainability science during the last 15 years, potential opportunities for advancing the research and use of scientific knowledge to support a transition toward sustainability, and challenges specifically related to establishing indicators and observations to support sustainability research and practice. This report summarizes the presentations and discussions from the workshop.
In 1999 the National Academies of Sciences, Engineering, and Medicine released a landmark report, Our Common Journey: A Transition toward Sustainability, which attempted to "reinvigorate the essential strategic connections between scientific research, technological development, and societies' efforts to achieve environmentally sustainable improvements in human well-being."1 The report emphasized the need for place-based and systems approaches to sustainability, proposed a research strategy for using scientific and technical knowledge to better inform the field, and highlighted a number of priorities for actions that could contribute to a sustainable future. The past 15 years have brought significant advances in observational and predictive capabilities for a range of natural and social systems, as well as development of other tools and approaches useful for sustainability planning. In addition, other frameworks for environmental decision making, such as those that focus on climate adaptation or resilience, have become increasingly prominent. A careful consideration of how these other approaches might intersect with sustainability is warranted, particularly in that they may affect similar resources or rely on similar underlying scientific data and models. 
 To further the discussion on these outstanding issues, the National Academies of Sciences, Engineering, and Medicine convened a workshop on January 14â€"15, 2016. Participants discussed progress in sustainability science during the last 15 years, potential opportunities for advancing the research and use of scientific knowledge to support a transition toward sustainability, and challenges specifically related to establishing indicators and observations to support sustainability research and practice. This report summarizes the presentations and discussions from the workshop.
The U.S. government supports a large, diverse suite of activities that can be broadly characterized as "global change research." Such research offers a wide array of benefits to the nation, in terms of protecting public health and safety, enhancing economic strength and competitiveness, and protecting the natural systems upon which life depends. The U.S. Global Change Research Program (USGCRP), which coordinates the efforts of numerous agencies and departments across the federal government, was officially established in 1990 through the U.S. Global Change Research Act (GCRA). In the subsequent years, the scope, structure, and priorities of the Program have evolved, (for example, it was referred to as the Climate Change Science Program [CCSP] for the years 2002-2008), but throughout, the Program has played an important role in shaping and coordinating our nation's global change research enterprise. This research enterprise, in turn, has played a crucial role in advancing understanding of our changing global environment and the countless ways in which human society affects and is affected by such changes. In mid-2011, a new NRC Committee to Advise the USGCRP was formed and charged to provide a centralized source of ongoing whole-program advice to the USGCRP. The first major task of this committee was to provide a review of the USGCRP draft Strategic Plan 2012-2021 (referred to herein as "the Plan"), which was made available for public comment on September 30, 2011. A Review of the U.S. Global Change Research Program's Strategic Plan addresses an array of suggestions for improving the Plan, ranging from relatively small edits to large questions about the Program's scope, goals, and capacity to meet those goals. The draft Plan proposes a significant broadening of the Program's scope from the form it took as the CCSP. Outlined in this report, issues of key importance are the need to identify initial steps the Program will take to actually achieve the proposed broadening of its scope, to develop critical science capacity that is now lacking, and to link the production of knowledge to its use; and the need to establish an overall governance structure that will allow the Program to move in the planned new directions.
The US Global Change Research Program (USGCRP) is a collection of 13 Federal entities charged by law to assist the United States and the world to understand, assess, predict, and respond to human-induced and natural processes of global change. As the understanding of global change has evolved over the past decades and as demand for scientific information on global change has increased, the USGCRP has increasingly focused on research that can inform decisions to cope with current climate variability and change, to reduce the magnitude of future changes, and to prepare for changes projected over coming decades. Overall, the current breadth and depth of research in these agencies is insufficient to meet the country's needs, particularly to support decision makers. This report provides a rationale for evaluating current program membership and capabilities and identifying potential new agencies and departments in the hopes that these changes will enable the program to more effectively inform the public and prepare for the future. It also offers actionable recommendations for adjustments to the methods and procedures that will allow the program to better meet its stated goals.
Openness and sharing of information are fundamental to the progress of science and to the effective functioning of the research enterprise. The advent of scientific journals in the 17th century helped power the Scientific Revolution by allowing researchers to communicate across time and space, using the technologies of that era to generate reliable knowledge more quickly and efficiently. Harnessing today's stunning, ongoing advances in information technologies, the global research enterprise and its stakeholders are moving toward a new open science ecosystem. Open science aims to ensure the free availability and usability of scholarly publications, the data that result from scholarly research, and the methodologies, including code or algorithms, that were used to generate those data. Open Science by Design is aimed at overcoming barriers and moving toward open science as the default approach across the research enterprise. This report explores specific examples of open science and discusses a range of challenges, focusing on stakeholder perspectives. It is meant to provide guidance to the research enterprise and its stakeholders as they build strategies for achieving open science and take the next steps.
This report reviews the U.S. Climate Change Science Program's new draft assessment product on characterizing and communicating uncertainty information for climate change decision making, one of 21 climate change assessment products that the program is developing to meet the requirements of the 1990 Global Change Research Act. Although the draft assessment is effective in discussing methods of characterizing uncertainty, it falls short in several ways. It is written for researchers involved in assessment efforts and will likely be of use to them, but does not address other key audiences, particularly policymakers, decision-makers, and members of the media and general public. In addition, it does not assess the full range of "best practice approaches" for characterizing, incorporating, and communicating uncertainty. These weaknesses were due in part to a change in the prospectus after the process had begun to include new target audiences and a different scope of work. It will take a substantial revision of the current draft or production of a companion document, both requiring additional authors, to address these issues.
The Small Business Innovation Research (SBIR) program is one of the largest examples of U.S. public-private partnerships, and was established in 1982 to encourage small businesses to develop new processes and products and to provide quality research in support of the U.S. government's many missions. The U.S. Congress tasked the National Research Council with undertaking a comprehensive study of how the SBIR program has stimulated technological innovation and used small businesses to meet federal research and development needs, and with recommending further improvements to the program. In the first round of this study, an ad hoc committee prepared a series of reports from 2004 to 2009 on the SBIR program at the five agencies responsible for 96 percent of the program's operations-including the National Science Foundation (NSF). Building on the outcomes from the first round, this second round presents the committee's second review of the NSF SBIR program's operations. Public-private partnerships like SBIR are particularly important since today's knowledge economy is driven in large part by the nation's capacity to innovate. One of the defining features of the U.S. economy is a high level of entrepreneurial activity. Entrepreneurs in the United States see opportunities and are willing and able to assume risk to bring new welfare-enhancing, wealth-generating technologies to the market. Yet, although discoveries in areas such as genomics, bioinformatics, and nanotechnology present new opportunities, converting these discoveries into innovations for the market involves substantial challenges. The American capacity for innovation can be strengthened by addressing the challenges faced by entrepreneurs.
In 2004, an ad hoc committee was charged with preparing this third report examining the most senior S&T appointments to federal government positions and updating the accompanying list of the most urgent S&T presidential appointments. Sufficient changes have occurred since the National Academies 2000 report on presidential appointmentsâ€"including the 2001 terrorist attacks, the anthrax deaths, the reorganization of homeland-security activities in the federal government, new developments in S&T, and concerns about the politicization of S&T decision making and adviceâ€"to warrant this new edition. In contrast with previous reports on the subject, this one covers not only presidential appointments to top S&T leadership positions but also the appointment of scientists, engineers, and health professionals to serve on federal advisory committees that focus on science-based policy or on the review of research proposals. The committee recognizes that other areas of federal responsibility are as important as S&T, but S&T appointments are the only ones within its purview.
This National Research Council (NRC) report reviews a draft of the U.S. Climate Change Science Program (CCSP) Synthesis and Assessment Product 3.3, Weather and Climate Extremes in a Changing Climate, the 3rd in a series of 21 CCSP products addressing important topics related to climate change. The NRC report finds that the draft provides a good and thorough assessment of the important issues regarding extreme events over North America and how they may change in the context of a changing climate. The continuity and cohesion among the chapters could be improved by greater coordination among the chapter authorship teams, who should also ensure that the tone and scope of the chapters are consistent with the document's Abstract and Executive Summary. The authors should strive to consolidate the sections on tropical cyclones; however, the discussion of drought and ecological impacts could be expanded. Overall, the committee finds that the scope, content, and scientific rigor of the current draft provide a solid basis for the final version of Synthesis and Assessment Product 3.3.
The report reviews a draft strategic plan from the U.S. Climate Change Science Program, a program formed in 2002 to coordinate and direct U.S. efforts in climate change and global change research. The U.S. Climate Change Science Program incorporates the decade-old Global Change Research Program and adds a new component -the Climate Change Research Initiative-whose primary goal is to "measurably improve the integration of scientific knowledge, including measures of uncertainty, into effective decision support systems and resources.
Climate change is one of the most important global environmental problems facing the world today. Policy decisions are already being made to limit or adapt to climate change and its impacts, but there is a need for greater integration between science and decision making. This book proposes six priorities for restructuring the United States' climate change research program to develop a more robust knowledge base and support informed responses: Reorganize the Program Around Integrated Scientific-Societal Issues Establish a U.S. Climate Observing System Support a New Generation of Coupled Earth System Models Strengthen Research on Adaptation, Mitigation, and Vulnerability Initiate a National Assessment of the Risks and Costs of Climate Change Impacts and Options to Respond Coordinate Federal Efforts to Provide Climate Information, Tools, and Forecasts Routinely to Decision Makers
Climate change is occurring. It is very likely caused by the emission of greenhouse gases from human activities, and poses significant risks for a range of human and natural systems. And these emissions continue to increase, which will result in further change and greater risks. America's Climate Choices makes the case that the environmental, economic, and humanitarian risks posed by climate change indicate a pressing need for substantial action now to limit the magnitude of climate change and to prepare for adapting to its impacts. Although there is some uncertainty about future risk, acting now will reduce the risks posed by climate change and the pressure to make larger, more rapid, and potentially more expensive reductions later. Most actions taken to reduce vulnerability to climate change impacts are common sense investments that will offer protection against natural climate variations and extreme events. In addition, crucial investment decisions made now about equipment and infrastructure can "lock in" commitments to greenhouse gas emissions for decades to come. Finally, while it may be possible to scale back or reverse many responses to climate change, it is difficult or impossible to "undo" climate change, once manifested. Current efforts of local, state, and private-sector actors are important, but not likely to yield progress comparable to what could be achieved with the addition of strong federal policies that establish coherent national goals and incentives, and that promote strong U.S. engagement in international-level response efforts. The inherent complexities and uncertainties of climate change are best met by applying an iterative risk management framework and making efforts to significantly reduce greenhouse gas emissions; prepare for adapting to impacts; invest in scientific research, technology development, and information systems; and facilitate engagement between scientific and technical experts and the many types of stakeholders making America's climate choices.
The U.S. Climate Change Science Program (CCSP) coordinates the efforts of 13 federal agencies to understand why climate is changing, to improve predictions about how it will change in the future, and to use that information to assess impacts on human systems and ecosystems and to better support decision making. Evaluating Progress of the U.S. Climate Change Science Program is the first review of the CCSP's progress since the program was established in 2002. It lays out a method for evaluating the CCSP, and uses that method to assess the strengths and weaknesses of the entire program and to identify areas where progress has not met expectations. The committee found that the program has made good progress in documenting and understanding temperature trends and related environmental changes on a global scale, as well as in understanding the influence of human activities on these observed changes. The ability to predict future climate changes also has improved, but efforts to understand the impacts of such changes on society and analyze mitigation and adaptation strategies are still relatively immature. The program also has not met expectations in supporting decision making, studying regional impacts, and communicating with a wider group of stakeholders.
Climate change is occurring, is very likely caused by human activities, and poses significant risks for a broad range of human and natural systems. Each additional ton of greenhouse gases emitted commits us to further change and greater risks. In the judgment of the Committee on America's Climate Choices, the environmental, economic, and humanitarian risks of climate change indicate a pressing need for substantial action to limit the magnitude of climate change and to prepare to adapt to its impacts. A principal message from the recent National Research Council report, America's Climate Choices, this brief summary of how climate change will shape many aspects of life in the foreseeable future emphasizes the vital importance of preparation for these changes. The report points to the importance of formal and informal education in supporting the public's understanding of those challenges climate change will bring, and in preparing current and future generations to act to limit the magnitude of climate change and respond to those challenges. Recognizing both the urgency and the difficulty of climate change education, the National Research Council, with support from the National Science Foundation, formed the Climate Change Education Roundtable. The roundtable brings together federal agency representatives with diverse experts and practitioners in the physical and natural sciences, social sciences, learning sciences, environmental education, education policy, extension education and outreach, resource management, and public policy to engage in discussion and explore educational strategies for addressing climate change. Two workshops were held to survey the landscape of climate change education. The first explored the goals for climate change education for various target audiences. The second workshop, which is the focus of this summary, was held on August 31 and September 1, 2011, and focused on the teaching and learning of climate change and climate science in formal education settings, from kindergarten through the first two years of college (K-14). This workshop, based on an already articulated need to teach climate change education, provided a forum for discussion of the evidence from research and practice. The goal of this workshop was to raise and explore complex questions around climate change education, and to address the current status of climate change education in grade K-14 of the formal education system by facilitating discussion between expert researchers and practitioners in complementary fields, such as education policy, teacher professional development, learning and cognitive science, K-12 and higher education administration, instructional design, curriculum development, and climate science. Climate Change Education in Formal Settings, K-14: A Workshop Summary summarizes the two workshops.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.