Research related to chemical warfare agents (CWAs) has historically focused on life threatening battlefield effects caused by high level exposures to the agents, not effects associated with exposures to low concentrations of them. In this report, low level concentrations refers to exposures that may not have any immediate observed health effects, but may produce delayed health effects months or years later. Recently, there has been increased concern about the potential health effects of exposures to CWAs at low concentrations. This report reviews the Department of Defense's (DOD) Research Plan for obtaining toxicologic and other relevant data to assess risk to military personnel. The CWAs of concern include the following nerve and vesicant agents: tabun, sarin, soman, cyclosarin, VX, and sulfur mustard. The report discusses the health effects of exposure to low levels of these agents and provides guidance to DOD on appropriate risk assessment methods for assessing toxicologic risk to military personnel from low-level exposures to CWAs. The report concludes that DOD's Research Plan is well planned and many of the proposed research tasks are likely to provide valuable information to DOD in protecting military personnel.
Since the 1980s, the U.S. military has used depleted uranium in munitions and in protective armor on tanks. Depleted uranium is a toxic heavy metal and is weakly radioactive. Concerns have been raised about the adverse health effects from exposure to depleted uranium that is aerosolized during combat. Some think it may be responsible for illnesses in exposed veterans and civilians. These concerns led the Army to commission a book, Depleted Uranium Aerosol Doses and Risks: Summary of U.S. Assessments, referred to as the Capstone Report that evaluates the health risks associated with depleted uranium exposure. This National Research Council book reviews the toxicologic, radiologic, epidemiologic, and toxicokinetic data on depleted uranium, and assesses the Army's estimates of health risks to personnel exposed during and after combat. The book recommends that the Army re-evaluate the basis for some of its predictions about health outcomes at low levels of exposure, but, overall, the Capstone Report was judged to provide a reasonable characterization of the exposure and risks from depleted uranium.
In 1993, the National Research Council's Committee on Toxicology developed criteria and methods for EPA and the Agency for Toxic Substances and Disease Registry (ATSDR) to develop community emergency exposure levels for extremely hazardous substances for the general population. A few years later, the National Advisory Committee for Acute Exposure Guideline Levels for Hazardous Substances (NAC)â€"composed of members of EPA, DOD, other federal and state agencies, industry, academia, and other organizationsâ€"was established to identify, review, and interpret toxicologic and other scientific data to develop acute exposure guidelines (AEGLs) for high-priority, acutely toxic chemicals. Three levelsâ€"AEGL-1, AEGL-2, and AEGL-3 are developed for each of five exposure periods (10 min, 30 min, 1 hr, 4 hr, and 8 hr) and are distinguished by varying degrees of severity of toxic effects. This current report reviews the NAC reports for their scientific validity, completeness, and consistency with the NRC guideline reports developed in 1993 and 2001. This report is the fifth volume in the series and covers AEGLs for chlorine dioxide, chlorine trifluoride, cyclohexylamine, ethylenediamine, hydrofluoroether-7100, and tetranitromethane. It concludes that the AEGLs developed by NAC are scientifically valid and consistent with the NRC guideline reports. AEGLs are needed for a wide range of planning, response, and prevention applications. These values provide data critical to evacuation decisions and discussions between community leaders and industries as they seek ways to minimize the health impact should the chemical release occur. Some of the finalized AEGLs have been officially adopted by the Department of the Army, FEMA, and the Department of Transportation as the official levels for use by those agencies.
U.S. Navy personnel who work on submarines are in an enclosed and isolated environment for days or weeks at a time when at sea. Unlike a typical work environment, they are potentially exposed to air contaminants 24 hours a day. To protect workers from potential adverse health effects due to those conditions, the U.S. Navy has established exposure guidance levels for a number of contaminants. The Navy asked a subcommittee of the National Research Council (NRC) to review, and develop when necessary, exposure guidance levels for 10 contaminants. Overall, the subcommittee found the values proposed by the Navy to be suitable for protecting human health. For a few chemicals, the committee proposed levels that were lower than those proposed by the Navy. In conducting its evaluation, the subcommittee found that there is little exposure data available on the submarine environment and echoed a previous recommendation from an earlier NRC report to conduct monitoring that would provide a complete analysis of submarine air and data on exposure of personnel to contaminants.
The U.S. Environmental Protection Agency (EPA) has a mission and regulatory responsibility to protect human health and the environment. EPA's pursuit of that goal includes a variety of research activities involving human subjects, such as epidemiologic studies and surveys. Those research activities also involve studies of individuals who volunteer to be exposed to air pollutants intentionally in controlled laboratory settings so that measurements can be made of transient and reversible biomarker or physiologic responses to those exposures that can indicate pathways of toxicity and mechanisms of air-pollution responses. The results of those controlled human inhalation exposure (CHIE) studies, also referred to as human clinical studies or human challenge studies, are used to inform policy decisions and help establish or revise standards to protect public health and improve air quality. Controlled Human Inhalation-Exposure Studies at EPA addresses scientific issues and provides guidance on the conduct of CHIE studies. This report assesses the utility of CHIE studies to inform and reduce uncertainties in setting air-pollution standards to protect public health and assess whether continuation of such studies is warranted. It also evaluates the potential health risks to test subjects who participated in recent studies of air pollutants at EPA's clinical research facility.
In response to a request from the U.S. Army, a committee convened by the National Research Council (NRC) conducted the first in a sequence of studies evaluating the combined health effects of low-level exposure to two chemicals Army personnel are likely to be exposed to in firing tank weapons. The Army sought information on whether the two chemicals, hydrogen cyanide and carbon monoxide, result in similar health impacts and should be assessed together when establishing exposure limits. Based on a review of the scientific literature, the report finds that the biochemical health impacts of the chemicals are similar and that the Army's proposed approach to setting exposure limits is appropriate. Because previous research has focused on high exposures, this initial NRC report recommends that futher neurological studies at low concentrations of exposure to the chemicals be conducted.
The International Space Station is a closed and complex environment, so some contamination of its internal atmosphere and water system is expected. To protect space crews from contaminants in potable and hygiene water, the National Aeronautics and Space Administration (NASA) requested that the National Research Council (NRC) provide guidance on how to develop water exposure guidelines and review NASA's development of the exposure guidelines for specific chemicals. NASA selects water contaminants for which spacecraft water exposure guidelines (SWEGs) will be established; this involves identifying toxicity effects relevant to astronauts and calculating exposure concentrations on the basis of those end points. SWEGs are established for exposures of 1, 10, 100, and 1,000 days. This report is the second volume in the series, Spacecraft Water Exposure Guidelines for Selected Chemicals. SWEG reports for acetone, alkylamines, ammonia, barium, cadmium, caprolactam, formate, formaldehyde, manganese, total organic carbon, and zinc are included in this report. The committee concludes that the SWEGs developed for these chemicals are scientifically valid based on the data reviewed by NASA and are consistent with the NRC (2000) report, Methods for Developing Spacecraft Water Exposure Guidelines. SWEG reports for additional chemicals will be presented in a subsequent volume.
Acute Exposure Guideline Levels for Selected Airborne Chemicals, Volume 15 identifies, reviews, and interprets relevant toxicologic and other scientific data for ethyl mercaptan, methyl mercaptan, phenyl mercaptan, tert-octyl mercaptan, lewisite, methyl isothiocyanate, and selected monoisocyanates in order to develop acute exposure guideline levels (AEGLs) for these high-priority, acutely toxic chemicals. AEGLs represent threshold exposure limits (exposure levels below which adverse health effects are not likely to occur) for the general public and are applicable to emergency exposures ranging from 10 minutes (min) to 8 h. Three level--AEGL-1, AEGL-2, and AEGL-3--are developed for each of five exposure periods (10 min, 30 min, 1 h, 4 h, and 8 h) and are distinguished by varying degrees of severity of toxic effects. This report will inform planning, response, and prevention in the community, the workplace, transportation, the military, and the remediation of Superfund sites.
Risk assessment has become a dominant public policy tool for making choices, based on limited resources, to protect public health and the environment. It has been instrumental to the mission of the U.S. Environmental Protection Agency (EPA) as well as other federal agencies in evaluating public health concerns, informing regulatory and technological decisions, prioritizing research needs and funding, and in developing approaches for cost-benefit analysis. However, risk assessment is at a crossroads. Despite advances in the field, risk assessment faces a number of significant challenges including lengthy delays in making complex decisions; lack of data leading to significant uncertainty in risk assessments; and many chemicals in the marketplace that have not been evaluated and emerging agents requiring assessment. Science and Decisions makes practical scientific and technical recommendations to address these challenges. This book is a complement to the widely used 1983 National Academies book, Risk Assessment in the Federal Government (also known as the Red Book). The earlier book established a framework for the concepts and conduct of risk assessment that has been adopted by numerous expert committees, regulatory agencies, and public health institutions. The new book embeds these concepts within a broader framework for risk-based decision-making. Together, these are essential references for those working in the regulatory and public health fields.
Most people associate fluoride with the practice of intentionally adding fluoride to public drinking water supplies for the prevention of tooth decay. However, fluoride can also enter public water systems from natural sources, including runoff from the weathering of fluoride-containing rocks and soils and leaching from soil into groundwater. Fluoride pollution from various industrial emissions can also contaminate water supplies. In a few areas of the United States fluoride concentrations in water are much higher than normal, mostly from natural sources. Fluoride is one of the drinking water contaminants regulated by the U.S. Environmental Protection Agency (EPA) because it can occur at these toxic levels. In 1986, the EPA established a maximum allowable concentration for fluoride in drinking water of 4 milligrams per liter, a guideline designed to prevent the public from being exposed to harmful levels of fluoride. Fluoride in Drinking Water reviews research on various health effects from exposure to fluoride, including studies conducted in the last 10 years.
Beryllium is a lightweight metal that is used for its exceptional strength and high heat-absorbing capability. Beryllium and its alloys can be found in many important technologies in the defense and aeronautics industries, such as nuclear devices, satellite systems, radar systems, and aircraft bushings and bearings. Pulmonary disease associated with exposure to beryllium has been recognized and studied since the early 1940s, and an occupational guideline for limiting exposure to beryllium has been in place since 1949. Over the last few decades, much has been learned about chronic beryllium disease and factors that contribute to its occurrence in exposed people. Despite reduced workplace exposure, chronic beryllium disease continues to occur. Those developments have led to debates about the adequacy of the long-standing occupational exposure limit for protecting worker health. This book, requested by the U.S. Air Force to help to determine the steps necessary to protect its workforce from the effects of beryllium used in military aerospace applications, reviews the scientific literature on beryllium and outlines an exposure and disease management program for its protecting workers.
Extremely hazardous substances can be released accidentally as a result of chemical spills, industrial explosions, fires, or accidents involving railroad cars and trucks transporting EHSs. Workers and residents in communities surrounding industrial facilities where these substances are manufactured, used, or stored and in communities along the nation's railways and highways are potentially at risk of being exposed to airborne EHSs during accidental releases or intentional releases by terrorists. Pursuant to the Superfund Amendments and Reauthorization Act of 1986, the U.S. Environmental Protection Agency (EPA) has identified approximately 400 EHSs on the basis of acute lethality data in rodents. Acute Exposure Guideline Levels for Selected Airborne Chemicals, Volume 20 reviews and updates the technical support document on acute exposure guideline levels (AEGLs) for selected chloroformates. This update focuses on establishing AEGL-3 values for n-propyl chloroformate and isopropyl chloroformate, but will also consider whether any new data are available that would affect the proposed values for the other 10 chloroformates. AEGLs represent threshold exposure limits (exposure levels below which adverse health effects are not likely to occur) for the general public and are applicable to emergency exposures ranging from 10 minutes (min) to 8 h. Three levels - AEGL-1, AEGL-2, and AEGL-3 - are developed for each of five exposure periods (10 min, 30 min, 1 h, 4 h, and 8 h) and are distinguished by varying degrees of severity of toxic effects. This report will inform planning, response, and prevention in the community, the workplace, transportation, the military, and the remediation of Superfund sites.
NASA is aware of the potential toxicologic hazards to crew that might be associated with prolonged spacecraft missions. Despite major engineering advances in controlling the atmosphere within spacecraft, some contamination of the air appears inevitable. NASA has measured numerous airborne contaminants during space missions. As the missions increase in duration and complexity, ensuring the health and well-being of astronauts traveling and working in this unique environment becomes increasingly difficult. As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council to develop guidelines for establishing spacecraft maximum allowable concentrations (SMACs) for contaminants and to review SMACs for various spacecraft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the committee. This book is the fifth volume in the series Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants, and presents SMACs for acrolein, C3 to C8 aliphatic saturated aldehydes, C2 to C9 alkanes, ammonia, benzene, carbon dioxide, carbon monoxide, 1,2-dichloroethane, dimethylhydrazine, ethanol, formaldehyde, limonene, methanol, methylene dichloride, n-butanol, propylene glycol, toluene, trimethylsilanol, and xylenes.
Soldiers deployed during the 1991 Persian Gulf War were exposed to high concentrations of particulate matter (PM) and other airborne pollutants. Their exposures were largely the result of daily windblown dust, dust storms, and smoke from oil fires. On returning from deployment, many veterans complained of persistent respiratory symptoms. With the renewed activity in the Middle East over the last few years, deployed military personnel are again exposed to dust storms and daily windblown dust in addition to other types of PM, such as diesel exhaust and particles from open-pit burning. On the basis of the high concentrations observed and concerns about the potential health effects, DOD designed and implemented a study to characterize and quantify the PM in the ambient environment at 15 sites in the Middle East. The endeavor is known as the DOD Enhanced Particulate Matter Surveillance Program (EPMSP). The U.S. Army asked the National Research Council to review the EPMSP report. In response, the present evaluation considers the potential acute and chronic health implications on the basis of information presented in the report. It also considers epidemiologic and health-surveillance data collected by the USACHPPM, to assess potential health implications for deployed personnel, and recommends methods for reducing or characterizing health risks.
To guide mission planning, military decision makers need information on the health risks of potential exposures to individual soldiers and their potential impact on mission operations. To help with the assessment of chemical hazards, the U.S. Army Center for Health Promotion and Preventive Medicine developed three technical guides for characterizing chemicals in terms of their risks to the mission and to the health of the force. The report reviews these guides for their scientific validity and conformance with current risk-assessment practices. The report finds that the military exposure guidelines are appropriate (with some modification) for providing force health protection, but that for assessing mission risk, a new set of exposure guidelines is needed that predict concentrations at which health effects would degrade the performance of enough soldiers to hinder mission accomplishment.
The Gulf War in 1990-1991 was considered a brief and successful military operation, with few injuries or deaths of US troops. The war began in August 1990, and the last US ground troops returned home by June 1991. Although most Gulf War veterans resumed their normal activities, many soon began reporting a variety of nonexplained health problems that they attributed to their participation in the Gulf War, including chronic fatigue, muscle and joint pain, loss of concentration, forgetfulness, headache, and rash. Because of concerns about the veterans' health problems, the Department of Veterans Affairs (VA) requested that the Institute of Medicine (IOM) review the scientific and medical literature on the long-term adverse health effects of agents to which the Gulf War veterans may have been exposed. This report is a broad overview of the toxicology of sarin and cyclosarin. It assesses the biologic plausibility with respect to the compounds in question and health effects.
The U.S. Army's Non-Stockpile Chemical Materiel program is responsible for dismantling former chemical agent production facilities and destroying recovered chemical materiel. In response to congressional requirements, the Center for Disease Control (CDC), in 2003, recommended new airborne exposure limits (AELs) to protect workforce and public health during operations to destroy this materiel. To assist in meeting these recommended limits, the U.S. Army asked the NRC for a review of its implementation plans for destruction of production facilities at the Newport Chemical Depot and the operation of two types of mobile destruction systems. This report presents the results of that review. It provides recommendations on analytical methods, on airborne containment monitoring, on operational procedures, on the applicability of the Resource Conservation and Recovery Act, and on involvement of workers and the public in implementation of the new AELs.
Research related to chemical warfare agents (CWAs) has historically focused on life threatening battlefield effects caused by high level exposures to the agents, not effects associated with exposures to low concentrations of them. In this report, low level concentrations refers to exposures that may not have any immediate observed health effects, but may produce delayed health effects months or years later. Recently, there has been increased concern about the potential health effects of exposures to CWAs at low concentrations. This report reviews the Department of Defense's (DOD) Research Plan for obtaining toxicologic and other relevant data to assess risk to military personnel. The CWAs of concern include the following nerve and vesicant agents: tabun, sarin, soman, cyclosarin, VX, and sulfur mustard. The report discusses the health effects of exposure to low levels of these agents and provides guidance to DOD on appropriate risk assessment methods for assessing toxicologic risk to military personnel from low-level exposures to CWAs. The report concludes that DOD's Research Plan is well planned and many of the proposed research tasks are likely to provide valuable information to DOD in protecting military personnel.
Beginning with the development of the atomic bomb during World War II, the United States continued to build nuclear weapons throughout the Cold War. Thousands of people mined and milled uranium, conducted research on nuclear warfare, or worked in nuclear munitions factories around the country from the 1940s through the 1980s. Such work continues today, albeit to a smaller extent. The Department of Energy (DOE) is now responsible for overseeing those sites and facilities, many of which were, and continue to be, run by government contractors. The materials used at those sites were varied and ranged from the benign to the toxic and highly radioactive. Workers at DOE facilities often did not know the identity of the materials with which they worked and often were unaware of health risks related to their use. In many instances, the work was considered top secret, and employees were cautioned not to reveal any work-related information to family or others. Workers could be exposed to both radioactive and nonradioactive toxic substances for weeks or even years. Consequently, some of the workers have developed health problems and continue to have concerns about potential health effects of their exposures to occupational hazards during their employment in the nuclear weapons industry. In response to the concerns expressed by workers and their representatives, DOL asked the Institute of Medicine (IOM) to review the SEM database and its use of a particular database, Haz-Map, as the source of its toxic substance-occupational disease links. Accordingly, this IOM consensus report reflects careful consideration of its charge by the committee, and describes the strengths and shortcomings of both. To complete its task, IOM formed an ad hoc committee of experts in occupational medicine, toxicology, epidemiology, industrial hygiene, public health, and biostatistics to conduct an 18-month study to review the scientific rigor of the SEM database. The committee held two public meetings at which it heard from DOL Division of Energy Employee Occupational Illness Compensation (DEEOIC) representatives, the DOL contractor that developed the SEM database, the developer of the Haz-Map database, DOE worker advocacy groups, and several individual workers. The committee also submitted written questions to DOL to seek clarification of specific issues and received written responses from DEEOIC. The committee's report considers both the strengths and weaknesses of the SEM and the Haz-Map databases, recognizing that the latter was developed first and for a different purpose. The committee then discusses its findings and recommends improvements that could be made in both databases with a focus on enhancing the usability of SEM for both DOL claims examiners and for former DOE workers and their representatives. Review of the Department of Labor's Site Exposure Matrix Database summarizes the committee's findings.
From the use of personal products to our consumption of food, water, and air, people are exposed to a wide array of agents each day-many with the potential to affect health. Exposure Science in the 21st Century: A Vision and A Strategy investigates the contact of humans or other organisms with those agents (that is, chemical, physical, and biologic stressors) and their fate in living systems. The concept of exposure science has been instrumental in helping us understand how stressors affect human and ecosystem health, and in efforts to prevent or reduce contact with harmful stressors. In this way exposure science has played an integral role in many areas of environmental health, and can help meet growing needs in environmental regulation, urban and ecosystem planning, and disaster management. Exposure Science in the 21st Century: A Vision and A Strategy explains that there are increasing demands for exposure science information, for example to meet needs for data on the thousands of chemicals introduced into the market each year, and to better understand the health effects of prolonged low-level exposure to stressors. Recent advances in tools and technologies-including sensor systems, analytic methods, molecular technologies, computational tools, and bioinformatics-have provided the potential for more accurate and comprehensive exposure science data than ever before. This report also provides a roadmap to take advantage of the technologic innovations and strategic collaborations to move exposure science into the future.
Between 1942 and 1975, the U.S. Army conducted tests with human subjects to study the effects of a variety of agents, including chemical warfare and biological agents. The potential long-term health effects on the test subjects from their exposures have been evaluated periodically, most recently in a report titled Assessment of Potential Long-Term Health Effects on Army Human Test Subjects of Relevant Biological and Chemical Agents, Drugs, Medications and Substances: Literature Review and Analysis (the Report), which was prepared by a contractor to assist the Army with making determinations about providing medical care to former test subjects. In response to a request by the Army, the National Academies of Sciences, Engineering, and Medicine formed a committee that was tasked with examining whether the Report appropriately identified potential long-term health effects from exposure to the test agents and whether an adequate weight-of-evidence approach was used to characterize the strength of the associations between the agents and their potential health effects. The committee was made aware at its first meeting on November 30, 2017, that the Army had already begun to receive applications for medical care and that some determinations may need to be made before the committee's evaluation of the Report was completed. Because of this urgency, the Army developed a process by which applications for medical care will be reviewed, and as a result, the committee was given the additional task of reviewing the Army's Memorandum that describes the approach that will be used by the Army to evaluate agent- and outcome-specific associations. This interim report was prepared to facilitate the Army's deliberations. A review of the Report is presented first, followed by a review of the Memorandum.
No reliable acute-exposure1 standards have been established for the particular purpose of protecting soldiers from toxic exposures to chemical warfare (CW) agents. Some human-toxicity estimates are available for the most common CW agentsâ€"organophosphorus nerve agents and vesicants; however, most of those estimates were developed for offensive purposes (that is, to kill or incapacitate the enemy) and were intended to be interim values only. Because of the possibility of a chemical attack by a foreign power, the Army's Office of the Surgeon General asked the Army's Chemical Defense Equipment Process Action Team (CDEPAT) to review the toxicity data for the nerve agents GA (tabun), GB(sarin), GD (soman), GF, and VX, and the vesicant agent sulfur mustard (HD) and to establish a set of exposure limits that would be useful in protecting soldiers from toxic exposures to those agents. This report is an independent review of the CDEPAT report to determine the scientific validity of the proposed estimates.
In response to a request from the U.S. Army, a committee convened by the National Research Council (NRC) conducted the first in a sequence of studies evaluating the combined health effects of low-level exposure to two chemicals Army personnel are likely to be exposed to in firing tank weapons. The Army sought information on whether the two chemicals, hydrogen cyanide and carbon monoxide, result in similar health impacts and should be assessed together when establishing exposure limits. Based on a review of the scientific literature, the report finds that the biochemical health impacts of the chemicals are similar and that the Army's proposed approach to setting exposure limits is appropriate. Because previous research has focused on high exposures, this initial NRC report recommends that futher neurological studies at low concentrations of exposure to the chemicals be conducted.
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.