The U.S. military has committed to a strategy of network-centric warfare. As a result, the Army has become increasingly interested in the critical role of network science. To a significant extent, this interest was stimulated by an earlier NRC report, Network Science. To build on that book, the Army asked the NRC to conduct a study to define advanced operating models and architectures for future Army laboratories and centers focused on network science, technologies, and experimentation (NSTE). The challenges resulting from base realignment and closure (BRAC) relocations of Army research, development, and engineering resourcesâ€"as they affected the NSTE programâ€"were also to be a focus of the study. This book provides a discussion of what NSTE is needed by the Army; an examination of the NSTE currently carried out by the Army; an assessment of needed infrastructure resources for Army NSTE; and an analysis of goals, models, and alternatives for an NSTE center.
Among its key responsibilities, the U.S. Special Operations Command (SOCOM) plans and synchronizes operations against terrorist networks. At any given moment, SOF are likely to be engaged in some state of the planning or execution of special operations in many countries around the world, spanning a wide range of environments and mission. SOF therefore must be capable of operating in environments ranging from tropical jungle to arctic, maritime to desert, subterranean to mountainous, and rural to urban. Within this vast range additional factors may influence technical and operational requirements including weather, topography, bathymetry, geology, flora, fauna, and human population density. All of these factors must be weighed in terms of the challenges they pose to supporting communications and operational security. In short, SOF must maintain the capability to operate globally, in any environment, angainst any threats that can be countered by its unique capabilities. Sensing and Supporting Communications Capabilities for Special Operations Forces focuses primarily on the key core SOF task of special reconnaissance, to determine SOF-specific sensing and supporting communications needs and mapping them to existing and emerging technologies. The book discusses preliminary observations, issuees, and challenges, and identifies additional capabilities and technology areas that should be addressed.
In the military, information technology (IT) has enabled profound advances in weapons systems and the management and operation of the defense enterprise. A significant portion of the Department of Defense (DOD) budget is spent on capabilities acquired as commercial IT commodities, developmental IT systems that support a broad range of warfighting and functional applications, and IT components embedded in weapons systems. The ability of the DOD and its industrial partners to harness and apply IT for warfighting, command and control and communications, logistics, and transportation has contributed enormously to fielding the world's best defense force. However, despite the DOD's decades of success in leveraging IT across the defense enterprise, the acquisition of IT systems continues to be burdened with serious problems. To address these issues, the National Research Council assembled a group of IT systems acquisition and T&E experts, commercial software developers, software engineers, computer scientists and other academic researchers. The group evaluated applicable legislative requirements, examined the processes and capabilities of the commercial IT sector, analyzed DOD's concepts for systems engineering and testing in virtual environments, and examined the DOD acquisition environment. The present volume summarizes this analysis and also includes recommendations on how to improve the acquisition, systems engineering, and T&E processes to achieve the DOD's network-centric goals.
The U.S. military has committed to a strategy of network-centric warfare. As a result, the Army has become increasingly interested in the critical role of network science. To a significant extent, this interest was stimulated by an earlier NRC report, Network Science. To build on that book, the Army asked the NRC to conduct a study to define advanced operating models and architectures for future Army laboratories and centers focused on network science, technologies, and experimentation (NSTE). The challenges resulting from base realignment and closure (BRAC) relocations of Army research, development, and engineering resourcesâ€"as they affected the NSTE programâ€"were also to be a focus of the study. This book provides a discussion of what NSTE is needed by the Army; an examination of the NSTE currently carried out by the Army; an assessment of needed infrastructure resources for Army NSTE; and an analysis of goals, models, and alternatives for an NSTE center.
Network-Centric Naval Forces: A Transition Strategy for Enhancing Operational Capabilities is a study to advise the Department of the Navy regarding its transition strategy to achieve a network-centric naval force through technology application. This report discusses the technical underpinnings needed for a transition to networkcentric forces and capabilities.
The Department of Defense is in the process of transforming the nation's armed forces to meet the military challenges of the 21st century. Currently, the opportunity exists to carry out experiments at individual and joint service levels to facilitate this transformation. Experimentation, which involves a spectrum of activities including analyses, war games, modeling and simulation, small focused experiments, and large field events among other things, provides the means to enhance naval and joint force development. To assist the Navy in this effort, the Chief of Naval Operations (CNO) asked the National Research Council (NRC) to conduct a study to examine the role of experimentation in building future naval forces to operate in the joint environment. The NRC formed the Committee for the Role of Experimentation in Building Future Naval Forces to perform the study.
Currently, the Departments of Defense (DOD) and Commerce (DOC) acquire and operate separate polarorbiting environmental satellite systems that collect data needed for military and civil weather forecasting. The National Performance Review (NPR) and subsequent Presidential Decision Directive (PDD), directed the DOD (Air Force) and the DOC (National Oceanic and Atmospheric Administration, NOAA) to establish a converged national weather satellite program that would meet U.S. civil and national security requirements and fulfill international obligations. NASA's Earth Observing System (EOS), and potentially other NASA programs, were included in the converged program to provide new remote sensing and spacecraft technologies that could improve the operational capabilities of the converged system. The program that followed, called the National Polar-orbiting Operational Environmental Satellite System (NPOESS), combined the follow-on to the DOD's Defense Meteorological Satellite Program and the DOC's Polar-orbiting Operational Environmental Satellite (POES) program. The tri-agency Integrated Program Office (IPO) for NPOESS was subsequently established to manage the acquisition and operations of the converged satellite. Issues in the Integration of Research and Operational Satellite Systems for Climate Research analyzes issues related to the integration of EOS and NPOESS, especially as they affect research and monitoring activities related to Earth's climate and whether it is changing.
FORCEnet is currently defined as the operational construct and architectural framework for naval warfare in the information age that integrates warriors, sensors, networks, command and control, platforms, and weapons into a networked, distributed, combat force that is scalable across all levels of conflict from seabed to space and sea to land. Although this definition views FORCEnet as the operational construct and the architectural framework for the entire transformed Navy, some have viewed FORCEnet merely as an information network and the associated FORCEnet architecture merely as an information systems architecture. FORCEnet Implementation Strategy provides advice regarding both the adequacy of this definition and the actions required to implement FORCEnet.
The Manufacturing Extension Partnership (MEP) - a program of the U.S. Department of Commerce's National Institute of Standards and Technology - has sought for more than two decades to strengthen American manufacturing. It is a national network of affiliated manufacturing extension centers and field offices located throughout all fifty states and Puerto Rico. Funding for MEP Centers comes from a combination of federal, state, local and private resources. Centers work directly with manufacturing firms in their state or sub-state region. MEP Centers provide expertise, services and assistance directed toward improving growth, supply chain positioning, leveraging emerging technologies, improving manufacturing processes, work force training, and the application and implementation of information in client companies through direct assistance provided by Center staff and from partner organizations and third party consultants. 21st Century Manufacturing seeks to generate a better understanding of the operation, achievements, and challenges of the MEP program in its mission to support, strengthen, and grow U.S. manufacturing. This report identifies and reviews similar national programs from abroad in order to draw on foreign practices, funding levels, and accomplishments as a point of reference and discusses current needs and initiatives in light of the global focus on advanced manufacturing,
This will help us customize your experience to showcase the most relevant content to your age group
Please select from below
Login
Not registered?
Sign up
Already registered?
Success – Your message will goes here
We'd love to hear from you!
Thank you for visiting our website. Would you like to provide feedback on how we could improve your experience?
This site does not use any third party cookies with one exception — it uses cookies from Google to deliver its services and to analyze traffic.Learn More.